Abstract A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV ≡ 10 18 eV). Despite the flux of these particles being extremely low, the area of ∼3000 km 2 covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase 1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultra-high-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km 2 sr yr, and search it for anisotropies over the 3.4 π steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with ∼15° Gaussian spread or ∼25° top-hat radius, is obtained at the 4 σ significance level for cosmic-ray energies above ∼40 EeV. 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            Large-scale Cosmic-ray Anisotropies with 19 yr of Data from the Pierre Auger Observatory
                        
                    
    
            Abstract Results are presented for the measurement of large-scale anisotropies in the arrival directions of ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation, prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are reconstructed above 4 EeV in four energy bins. Besides the established dipolar anisotropy in R.A. above 8 EeV, the Fourier amplitude of the 8–16 EeV energy bin is now also above the 5σdiscovery level. No time variation of the dipole moment above 8 EeV is found, setting an upper limit to the rate of change of such variations of 0.3% yr−1at the 95% confidence level. Additionally, the results for the angular power spectrum are shown, demonstrating no other statistically significant multipoles. The results for the equatorial dipole component down to 0.03 EeV are presented, using for the first time a data set obtained with a trigger that has been optimized for lower energies. Finally, model predictions are discussed and compared with observations, based on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.6 EeV. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10559023
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 976
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 48
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ultrahigh-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energetic cosmic rays from the direction of the supergalactic plane region using events with energies above 20 EeV recorded with the surface detector array of the Pierre Auger Observatory up to 2022 December 31, with a total exposure of 135,000 km2sr yr. The strongest indication for an excess that we find, with a posttrial significance of 3.1σ, is in the Centaurus region, as in our previous reports, and it extends down to lower energies than previously studied. We do not find any strong hints of excesses from any other region of the supergalactic plane at the same angular scale. In particular, our results do not confirm the reports by the Telescope Array Collaboration of excesses from two regions in the Northern Hemisphere at the edge of the field of view of the Pierre Auger Observatory. With a comparable integrated exposure over these regions, our results there are in good agreement with the expectations from an isotropic distribution.more » « less
- 
            Abstract The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff.Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space.We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lieof order Brms≃ (50–100) nG (20 Mpc/ds)( 100 kpc/Lcoh)1/2, with dsthe typical intersource separation and Lcohthe magnetic field coherence length. When this is the case,the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E-2.An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.more » « less
- 
            The Pierre Auger Observatory is the most sensitive instrument to detect photons with energies above . It measures extensive air showers generated by ultrahigh energy cosmic rays using a hybrid technique that exploits the combination of a fluorescence detector with a ground array of particle detectors. The signatures of a photon-induced air shower are a larger atmospheric depth of the shower maximum ( ) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced cascades. In this work, a new analysis technique in the energy interval between 1 and 30 EeV ( ) has been developed by combining the fluorescence detector-based measurement of with the specific features of the surface detector signal through a parameter related to the air shower muon content, derived from the universality of the air shower development. No evidence of a statistically significant signal due to photon primaries was found using data collected in about 12 years of operation. Thus, upper bounds to the integral photon flux have been set using a detailed calculation of the detector exposure, in combination with a data-driven background estimation. The derived 95% confidence level upper limits are 0.0403, 0.01113, 0.0035, 0.0023, and above 1, 2, 3, 5, and 10 EeV, respectively, leading to the most stringent upper limits on the photon flux in the EeV range. Compared with past results, the upper limits were improved by about 40% for the lowest energy threshold and by a factor 3 above 3 EeV, where no candidates were found and the expected background is negligible. The presented limits can be used to probe the assumptions on chemical composition of ultrahigh energy cosmic rays and allow for the constraint of the mass and lifetime phase space of super-heavy dark matter particles. Published by the American Physical Society2024more » « less
- 
            Abstract The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can manifest in pulsar timing arrays (PTAs) through excursions from, and breaks in, the expected power law of the GWB strain spectrum. To do this, we create a semianalytic SMBHB population model, fit to North American Nanohertz Observatory for Gravitational Waves (NANOGrav’s) 15 yr GWB amplitude, and with 1000 realizations, we study the populations’ characteristic strain and residual spectra. Comparing our models to the NANOGrav 15 yr spectrum, we find two interesting excursions from the power law. The first, at 2 nHz, is below our GWB realizations with ap-value significancep= 0.05–0.06 (≈1.8σ–1.9σ). The second, at 16 nHz, is above our GWB realizations withp= 0.04–0.15 (≈1.4σ–2.1σ). We explore the properties of a loud SMBHB that could cause such an excursion. Our simulations also show that the expected number of SMBHBs decreases by 3 orders of magnitude, from ∼106to ∼103, between 2 and 20 nHz. This causes a break in the strain spectrum as the stochasticity of the background breaks down at , consistent with predictions pre-dating GWB measurements. The diminished GWB signal from SMBHBs at frequencies above the 26 nHz break opens a window for PTAs to detect continuous GWs from individual SMBHBs or GWs from the early Universe.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
