skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Massive Protostars in a Protocluster—A Multi-scale ALMA View of G35.20-0.74N
Abstract We present a detailed study of the massive star-forming region G35.2-0.74N with Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm multi-configuration observations. At 0.″2 (440 au) resolution, the continuum emission reveals several dense cores along a filamentary structure, consistent with previous ALMA 0.85 mm observations. At 0.″03 (66 au) resolution, we detect 22 compact sources, most of which are associated with the filament. Four of the sources are associated with compact centimeter continuum emission, and two of these are associated with H30αrecombination line emission. The H30αline kinematics shows the ordered motion of the ionized gas, consistent with disk rotation and/or outflow expansion. We construct models of photoionized regions to simultaneously fit the multiwavelength free–free fluxes and the H30αtotal fluxes. The derived properties suggest the presence of at least three massive young stars with nascent hypercompact Hiiregions. Two of these ionized regions are surrounded by a large rotating structure that feeds two individual disks, revealed by dense gas tracers, such as SO2, H2CO, and CH3OH. In particular, the SO2emission highlights two spiral structures in one of the disks and probes the faster-rotating inner disks. The12CO emission from the general region reveals a complex outflow structure, with at least four outflows identified. The remaining 18 compact sources are expected to be associated with lower-mass protostars forming in the vicinity of the massive stars. We find potential evidence for disk disruption due to dynamic interactions in the inner region of this protocluster. The spatial distribution of the sources suggests a smooth overall radial density gradient without subclustering, but with tentative evidence of primordial mass segregation.  more » « less
Award ID(s):
2206450
PAR ID:
10559042
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAS/IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
936
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The relationship between outflow launching and the formation of accretion disks around young stellar objects is still not entirely understood, which is why spectrally and spatially resolved observations are needed. Recently, the Atacama Large Millimetre/sub-millimetre Array (ALMA) carried out long-baseline observations towards a handful of young sources, revealing connections between outflows and the inner regions of disks. Aims. Here we aim to determine the small-scale kinematical and morphological properties of the outflow from the isolated protostar B335 for which no Keplerian disk has, so far, been observed on scales down to 10 au. Methods. We used ALMA in its longest-baseline configuration to observe emission from CO isotopologues, SiO, SO 2 , and CH 3 OH. The proximity of B335 provides a resolution of ~3 au (0.03′′). We also combined our long-baseline data with archival observations to produce a high-fidelity image covering scales up to 700 au (7′′). Results. 12 CO has an X-shaped morphology with arms ~50 au in width that we associate with the walls of an outflow cavity, similar to what is observed on larger scales. Long-baseline continuum emission is confined to <7 au from the protostar, while short-baseline continuum emission follows the 12 CO outflow and cavity walls. Methanol is detected within ~30 au of the protostar. SiO is also detected in the vicinity of the protostar, but extended along the outflow. Conclusions. The 12 CO outflow does not show any clear signs of rotation at distances ≳30 au from the protostar. SiO traces the protostellar jet on small scales, but without obvious rotation. CH 3 OH and SO 2 trace a region <16 au in diameter, centred on the continuum peak, which is clearly rotating. Using episodic, high-velocity, 12 CO features, we estimate the launching radius of the outflow to be <0.1 au and dynamical timescales of the order of a few years. 
    more » « less
  2. Abstract We report high-resolution 1.3 mm continuum and molecular line observations of the massive protostar G28.20-0.05 with Atacama Large Millimeter/submillimeter Array. The continuum image reveals a ring-like structure with 2000 au radius, similar to morphology seen in archival 1.3 cm Very Large Array observations. Based on its spectral index and associated H30αemission, this structure mainly traces ionized gas. However, there is evidence for ∼30Mof dusty gas near the main millimeter continuum peak on one side of the ring, as well as in adjacent regions within 3000 au. A virial analysis on scales of ∼2000 au from hot core line emission yields a dynamical mass of ∼80M. A strong velocity gradient in the H30αemission is evidence for a rotating, ionized disk wind, which drives a larger-scale molecular outflow. An infrared spectral energy distribution (SED) analysis indicates a current protostellar mass ofm*∼ 40Mforming from a core with initial massMc∼ 300Min a clump with mass surface density of Σcl∼ 0.8 g cm−2. Thus the SED and other properties of the system can be understood in the context of core accretion models. A structure-finding analysis on the larger-scale continuum image indicates G28.20-0.05 is forming in a relatively isolated environment, with no other concentrated sources, i.e., protostellar cores, above ∼1Mfound from ∼0.1 to 0.4 pc around the source. This implies that a massive star can form in relative isolation, and the dearth of other protostellar companions within the ∼1 pc environs is a strong constraint on massive star formation theories that predict the presence of a surrounding protocluster. 
    more » « less
  3. Abstract We use the H41αrecombination line to create templates of the millimeter free–free emission in the ALMA-IMF continuum maps, which allows us to separate it from dust emission. This method complements spectral-index information and extrapolation from centimeter-wavelength maps. We use the derived maps to estimate the properties of up to 34 Hiiregions across the ALMA-IMF protoclusters. The hydrogen ionizing photon rateQ0and spectral types follow the evolutionary trend proposed by Motte et al. The youngest protoclusters lack detectable ionized gas, followed by protoclusters with increasing numbers of OB stars. The totalQ0increases from ∼1045s−1to >1049s−1. We used the adjacent He41αline to measure the relative number abundances of helium, finding values consistent with the Galactic interstellar medium, although a few outliers are discussed. A search for sites of maser amplification of the H41αline returned negative results. We looked for possible correlations between the electron densities, emission measures, andQ0with Hiiregion sizeD. The latter is the best correlated, withQ0∝D2.49 ± 0.18. This favors interpretations in which smaller ultracompact Hiiregions are not necessarily the less dynamically evolved versions of larger ones but rather are ionized by less massive stars. Moderate correlations were found between the dynamical width ΔVdynwithDandQ0. ΔVdynincreases from about 1 to 2 times the ionized-gas sound speed. Finally, an outlier Hiiregion south of W43-MM2 is discussed. We suggest that this source could harbor an embedded stellar or disk wind. 
    more » « less
  4. Abstract Protostellar disks are an ubiquitous part of the star formation process and the future sites of planet formation. As part of the Early Planet Formation in Embedded Disks large program, we present high angular resolution dust continuum (∼40 mas) and molecular line (∼150 mas) observations of the Class 0 protostar IRAS 15398–3359. The dust continuum is small, compact, and centrally peaked, while more extended dust structures are found in the outflow directions. We perform a 2D Gaussian fitting and find the deconvolved size and 2σradius of the dust disk to be 4.5 × 2.8 au and 3.8 au, respectively. We estimate the gas+dust disk mass assuming optically thin continuum emission to be 0.6MJ–1.8MJ, indicating a very low mass disk. The CO isotopologues trace components of the outflows and inner envelope, while SO traces a compact, rotating disk-like component. Using several rotation curve fittings on the position–velocity diagram of the SO emission, the lower limits of the protostellar mass and gas disk radius are 0.022Mand 31.2 au, respectively, from our Modified 2 single power-law fitting. A conservative upper limit of the protostellar mass is inferred to be 0.1M. The protostellar mass accretion rate and the specific angular momentum at the protostellar disk edge are found to be in the range of (1.3–6.1) × 10−6Myr−1and (1.2–3.8) × 10−4km s−1pc, respectively, with an age estimated between 0.4 × 104yr and 7.5 × 104yr. At this young age with no clear substructures in the disk, planet formation would likely not yet have started. This study highlights the importance of high-resolution observations and systematic fitting procedures when deriving dynamical properties of deeply embedded Class 0 protostars. 
    more » « less
  5. Aims.We aim to identify and characterize cores in the high-mass protocluster W49A, determine their evolutionary stages, and measure the associated lifetimes. Methods.We built a catalog of 129 cores extracted from an ALMA 1.3 mm continuum image at 0.26″ (2900 au) angular resolution. The association between cores and hypercompact or ultracompact HII(H/UC HII) regions was established from the analysis of VLA 3.3 cm continuum and H30αline observations. We also looked for emission of hot molecular cores (HMCs) using the methyl formate doublet at 218.29 GHz. Results.We identified 40 cores associated with an H/UC HIIregion and 19 HMCs over the ALMA mosaic. The 52 cores with an H/UC HIIregion and/or an HMC are assumed to be high-mass protostellar cores, while the rest of the core population likely consists of prestellar cores and low-mass protostellar cores. We found a good agreement between the two tracers of ionized gas, with 23 common detections and only four cores detected at 3.3 cm and not in H30α. The spectral indexes from 3.3 cm to 1.3 mm range from 1, for the youngest cores with partially optically thick free-free emission, to about −0.1, which is for the optically thin free-free emission obtained for cores that are likely more evolved. Conclusions.Using the H/UC HIIregions as a reference, we found the statistical lifetimes of the HMC and massive protostellar phases in W49N to be about 6 × 104yr and 1.4 × 105yr, respectively. We also showed that HMCs can coexist with H/UC HIIregions during a short fraction of the core lifetime, about 2 × 104yr. This indicates a rapid dispersal of the inner molecule envelope once the HC HIIis formed. 
    more » « less