skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Creation of High-Density Nitrogen-Vacancy Centers in CVD Diamond using High-Energy Photons from Ar+ Plasma
We use high-energy photons generated from Ar+plasma source to create a high-density and thick ( up to a thickness of 150 µm) nitrogen-vacancy centers layer in a commercially available type-IIa CVD-grown diamond substrate.  more » « less
Award ID(s):
2033210
PAR ID:
10559138
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-39-5
Page Range / eLocation ID:
JW2A.92
Format(s):
Medium: X
Location:
Charlotte, North Carolina
Sponsoring Org:
National Science Foundation
More Like this
  1. AlN Schottky barrier diodes with low ideality factor (<1.2), low differential ON-resistance (<0.6 mΩ cm2), high current density (>5 kA cm−2), and high breakdown voltage (680 V) are reported. The device structure consisted of a two-layer, quasi-vertical design with a lightly doped AlN drift layer and a highly doped Al0.75Ga0.25N ohmic contact layer grown on AlN substrates. A combination of simulation, current–voltage measurements, and impedance spectroscopy analysis revealed that the AlN/AlGaN interface introduces a parasitic electron barrier due to the conduction band offset between the two materials. This barrier was found to limit the forward current in fabricated diodes. Further, we show that introducing a compositionally-graded layer between the AlN and the AlGaN reduces the interfacial barrier and increases the forward current density of fabricated diodes by a factor of 104
    more » « less
  2. Abstract The realization of low thermal conductivity at high temperatures (0.11 W m−1K−1800 °C) in ambient air in a porous solid thermal insulation material, using stable packed nanoparticles of high‐entropy spinel oxide with 8 cations (HESO‐8 NPs) with a relatively high packing density of ≈50%, is reported. The high‐density HESO‐8 NP pellets possess around 1000‐fold lower thermal diffusivity than that of air, resulting in much slower heat propagation when subjected to a transient heat flux. The low thermal conductivity and diffusivity are realized by suppressing all three modes of heat transfer, namely solid conduction, gas conduction, and thermal radiation, via stable nanoconstriction and infrared‐absorbing nature of the HESO‐8 NPs, which are enabled by remarkable microstructural stability against coarsening at high temperatures due to the high entropy. This work can elucidate the design of the next‐generation high‐temperature thermal insulation materials using high‐entropy ceramic nanostructures. 
    more » « less
  3. III–V semiconductor type-II superlattices (T2SLs) are a promising material system with the potential to significantly reduce the dark current of, and thus realize high-performance in, infrared photodetectors at elevated temperatures. However, T2SLs have struggled to meet the performance metrics set by the long-standing infrared detector material of choice, HgCdTe. Recently, epitaxial plasmonic detector architectures have demonstrated T2SL detector performance comparable to HgCdTe in the 77–195 K temperature range. Here, we demonstrate a high operating temperature plasmonic T2SL detector architecture with high-performance operation at temperatures accessible with two-stage thermoelectric coolers. Specifically, we demonstrate long-wave infrared plasmonic detectors operating at temperatures as high as 230 K while maintaining dark currents below the “Rule 07” heuristic. At a detector operating temperature of 230 K, we realize 22.8% external quantum efficiency in a detector absorber only 372 nm thick ([Formula: see text]) with a peak specific detectivity of 2.29 × 109cm Hz1∕2W−1at 9.6  μm, well above commercial detectors at the same operating temperature. 
    more » « less
  4. Abstract This study presents a novel polymer‐in‐salt (PIS) zwitterionic polyurethane‐based solid polymer electrolyte (zPU‐SPE) that offers high ionic conductivity, strong interaction with electrodes, and excellent mechanical and electrochemical stabilities, making it promising for high‐performance all solid‐state lithium batteries (ASSLBs). The zPU‐SPE exhibits remarkable lithium‐ion (Li+) conductivity (3.7 × 10⁻⁴ S cm−1at 25 °C), enabled by exceptionally high salt loading of up to 90 wt.% (12.6 molar ratio of Li salt to polymer unit) without phase separation. It addresses the limitations of conventional SPEs by combining high ionic conductivity with a Li+transference number of 0.44, achieved through the incorporation of zwitterionic groups that enhance ion dissociation and transport. The high surface energy (338.4 J m2) and elasticity ensure excellent adhesion to Li anodes, reducing interfacial resistance and ensuring uniform Li+flux. When tested in Li||zPU||LiFePO₄ and Li||zPU||S/C cells, the zPU‐SPE demonstrated remarkable cycling stability, retaining 76% capacity after 2000 cycles with the LiFePO4cathode, and achieving 84% capacity retention after 300 cycles with the S/C cathode. Molecular simulations and a range of experimental characterizations confirm the superior structural organization of the zPU matrix, contributing to its outstanding electrochemical performance. The findings strongly suggest that zPU‐SPE is a promising candidate for next‐generation ASSLBs. 
    more » « less
  5. Abstract A novel n‐type copolymer dopant polystyrene–poly(4‐vinyl‐N‐hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm–1and high power factor of 67 µW m–1K–2are achieved for PSpF‐doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm–1at 88 °C and outstanding thermal stability are recorded. Further, organic transistors of PSpF‐doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2V–1s–1, respectively. The results suggest that polystyrene–poly(vinylpyridinium) salt copolymers with fluoride anions are promising for high‐performance n‐type all‐polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to the Seebeck coefficient, high power factor, thermal stability, and broad processing window. 
    more » « less