skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 20 years of change in tundra NDVI from coupled field and satellite observations
Abstract In 2022 we resampled normalized difference vegetation index (NDVI) along a 100 m transect in tundra near Utqiagvik, AK that had been previously measured through the 2000–2002 growing seasons, providing an opportunity to examine a 20 year NDVI change at a 1 m resolution in a region that is experiencing increased warming and precipitation over this period. Multidecadal NDVI change was spatially variable across the transect with nearly half of the transect showing greening, about a third not showing conclusive change, and about 20% browning. In wet areas, greening (increased NDVI) was associated with increased green leaf area index, while in drier areas greening was related to changes in species cover. Browning was not related to change in species cover and appeared to be due to increased coverage of standing dead material in graminoid dominated canopies. These types of detailed observations provide insights into the interpretation of satellite based NDVI trends and emphasize the importance of microtopography and hydrology in mediating vegetation change in a warming Arctic.  more » « less
Award ID(s):
1836861
PAR ID:
10559142
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Purpose-led Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
9
ISSN:
1748-9326
Page Range / eLocation ID:
094022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As one of the most sensitive areas to climate change, drylands cover ~40% of the Earth’s terrestrial land surface and host more than 38% of the global population. Meanwhile, their response to climate change and variability carries large uncertainties as induced by background climate, topography, and land cover composition; but there is a lack of intercomparison of different dryland ecosystems. In this study, we compare the changing climate and corresponding responses of major natural vegetation cover types in Xinjiang and Arizona, two typical drylands with similar landscapes in Asia and North America. Long-term (2002–2019) quasi-8-day datasets of daily precipitation, daily mean temperature, and Normalized Difference Vegetation Index (NDVI) were constructed based on station observations and remote sensing products. We found that much of Xinjiang experienced warming and wetting trends (although not co-located) over the past 18 years. In contrast, Arizona was dominated by warming with insignificant wetting or drying trends. Significant greening trends were observed in most parts of both study areas, while the increasing rate of NDVI anomalies was relatively higher in Xinjiang, jointly contributed by its colder and drier conditions. Significant degradation of vegetation growth (especially for shrubland) was observed over 18.8% of Arizona due to warming. Our results suggest that responses of similar natural vegetation types under changing climate can be diversified, as controlled by temperature and moisture in areas with different aridity. 
    more » « less
  2. Abstract Many studies have reported that the Arctic is greening; however, we lack an understanding of the detailed patterns and processes that are leading to this observed greening. The normalized difference vegetation index (NDVI) is used to quantify greening, which has had largely positive trends over the last few decades using low spatial resolution satellite imagery such as AVHRR or MODIS over the pan-Arctic region. However, substantial fine scale spatial heterogeneity in the Arctic makes this large-scale investigation hard to interpret in terms of vegetation and other environmental changes. Here we focus on one area of the northern Alaskan Arctic using high spatial resolution (4 m) multispectral satellite imagery from DigitalGlobeto analyze the greening trend near Utqiaġvik (formerly known as Barrow) over 14 years from 2002 to 2016. We found that tundra vegetation has been greening (τ = 0.65,p = 0.01, NDVI increase of 0.01 yr−1) despite no overall change in vegetation community composition. The greening is most closely correlated to the number of thawing degree days (R2 = 0.77,F = 21.5,p < 0.001) which increased in a similar linear trend over the 14 year study period (1.79 ± 0.50 days per year,p < 0.01,τ = −0.56). This suggests that in this Arctic ecosystem, greening is occurring due to a lengthening growing season that appears to stimulate plant productivity without any significant change in vegetation communities. We found that vegetation communities in wetter locations greened about twice as fast as those found in drier conditions supporting the hypothesis that these communities respond more strongly to warming. We suggest that in Arctic environments, vegetation productivity may continue to rise, particularly in wet areas. 
    more » « less
  3. Tundra vegetation productivity and composition are responding rapidly to climatic changes in the Arctic. These changes can, in turn, mitigate or amplify permafrost thaw. In this Review, we synthesize remotely sensed and field-observed vegetation change across the tundra biome, and outline how these shifts could influence permafrost thaw. Permafrost ice content appears to be an important control on local vegetation changes; woody vegetation generally increases in ice-poor uplands, whereas replacement of woody vegetation by (aquatic) graminoids following abrupt permafrost thaw is more frequent in ice-rich Arctic lowlands. These locally observed vegetation changes contribute to regional satellite-observed greening trends, although the interpretation of greening and browning is complicated. Increases in vegetation cover and height generally mitigate permafrost thaw in summer, yet, increase annual soil temperatures through snow-related winter soil warming effects. Strong vegetation–soil feedbacks currently alleviate the consequences of thaw-related disturbances. However, if the increasing scale and frequency of disturbances in a warming Arctic exceeds the capacity for vegetation and permafrost recovery, changes to Arctic ecosystems could be irreversible. To better disentangle vegetation– soil– permafrost interactions, ecological field studies remain crucial, but require better integration with geophysical assessments. 
    more » « less
  4. Abstract Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades. 
    more » « less
  5. null (Ed.)
    The ability to monitor post-fire ecological responses and associated vegetation cover change is crucial to understanding how boreal forests respond to wildfire under changing climate conditions. Uncrewed aerial vehicles (UAVs) offer an affordable means of monitoring post-fire vegetation recovery for boreal ecosystems where field campaigns are spatially limited, and available satellite data are reduced by short growing seasons and frequent cloud cover. UAV data could be particularly useful across data-limited regions like the Cajander larch (Larix cajanderi Mayr.) forests of northeastern Siberia that are susceptible to amplified climate warming. Cajander larch forests require fire for regeneration but are also slow to accumulate biomass post-fire; thus, tall shrubs and other understory vegetation including grasses, mosses, and lichens dominate for several decades post-fire. Here we aim to evaluate the ability of two vegetation indices, one based on the visible spectrum (GCC; Green Chromatic Coordinate) and one using multispectral data (NDVI; Normalized Difference Vegetation Index), to predict field-based vegetation measures collected across post-fire landscapes of high-latitude Cajander larch forests. GCC and NDVI showed stronger linkages with each other at coarser spatial resolutions e.g., pixel aggregated means with 3-m, 5-m and 10-m radii compared to finer resolutions (e.g., 1-m or less). NDVI was a stronger predictor of aboveground carbon biomass and tree basal area than GCC. NDVI showed a stronger decline with increasing distance from the unburned edge into the burned forest. Our results show NDVI tended to be a stronger predictor of some field-based measures and while GCC showed similar relationships with the data, it was generally a weaker predictor of field-based measures for this region. Our findings show distinguishable edge effects and differentiation between burned and unburned forests several decades post-fire, which corresponds to the relatively slow accumulation of biomass for this ecosystem post-fire. These findings show the utility of UAV data for NDVI in this region as a tool for quantifying and monitoring the post-fire vegetation dynamics in Cajander larch forests. 
    more » « less