This study outlines a novel intrusion detection system (IDS) to detect compromised sensor data anomalies in interdependent industrial processes. The IDS used a peer-to-peer communication framework which allowed multiple programmable logic controllers (PLCs) to communicate and share sensor data. Utilizing the shared sensor data, state estimators used a long short-term memory (LSTM) machine learning algorithm to identify anomalous sensor readings connected to neighboring PLCs controlling an interdependent physical process. This study evaluated the performance of the IDS on three industrial operations aligning to a midstream oil terminal. The framework successfully detected several multi-sensor compromises during mid-stream oil terminal operations. A set of performance evaluations also showed no impact on the real-time operations of the PLC and outlined the prediction latencies of the framework.
more »
« less
This content will become publicly available on December 9, 2025
MOLA: Enhancing Industrial Process Monitoring Using a Multi-Block Orthogonal Long Short-Term Memory Autoencoder
In this work, we introduce MOLA, a multi-block orthogonal long short-term memory autoencoder paradigm, to conduct accurate, reliable fault detection of industrial processes. To achieve this, MOLA effectively extracts dynamic orthogonal features by introducing an orthogonality-based loss function to constrain the latent space output. This helps eliminate the redundancy in the features identified, thereby improving the overall monitoring performance. On top of this, a multi-block monitoring structure is proposed, which categorizes the process variables into multiple blocks by leveraging expert process knowledge about their associations with the overall process. Each block is associated with its specific orthogonal long short-term memory autoencoder model, whose extracted dynamic orthogonal features are monitored by distance-based Hotelling's T^2 statistics and quantile-based cumulative sum (CUSUM) designed for multivariate data streams that are nonparametric and heterogeneous. Compared to having a single model accounting for all process variables, such a multi-block structure significantly improves overall process monitoring performance, especially for large-scale industrial processes. Finally, we propose an adaptive weight-based Bayesian fusion (W-BF) framework to aggregate all block-wise monitoring statistics into a global statistic that we monitor for faults. Fault detection speed and accuracy are improved by assigning and adjusting weights to blocks based on the sequential order in which alarms are raised. We demonstrate the efficiency and effectiveness of our MOLA framework by applying it to the Tennessee Eastman process and comparing the performance with various benchmark methods.
more »
« less
- Award ID(s):
- 2331080
- PAR ID:
- 10559226
- Editor(s):
- Budman, Hector
- Publisher / Repository:
- Processes
- Date Published:
- Journal Name:
- Processes
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 2227-9717
- Page Range / eLocation ID:
- 2824
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pressure swing adsorption (PSA) is a widely used technology to separate a gas product from impurities in a variety of fields. Due to the complexity of PSA operations, process and instrument faults can occur at different parts and/or steps of the process. Thus, effective process monitoring is critical for ensuring efficient and safe operations of PSA systems. However, multi-bed PSA processes present several major challenges to process monitoring. First, a PSA process is operated in a periodic or cyclic fashion and never reaches a steady state; Second, the duration of different operation cycles is dynamically controlled in response to various disturbances, which results in a wide range of normal operation trajectories. Third, there is limited data for process monitoring, and bed pressure is usually the only measured variable for process monitoring. These key characteristics of the PSA operation make process monitoring, especially early fault detection, significantly more challenging than that for a continuous process operated at a steady state. To address these challenges, we propose a feature-based statistical process monitoring (SPM) framework for PSA processes, namely feature space monitoring (FSM). Through feature engineering and feature selection, we show that FSM can naturally handle the key challenges in PSA process monitoring and achieve early detection of subtle faults from a wide range of normal operating conditions. The performance of FSM is compared to the conventional SPM methods using both simulated and real faults from an industrial PSA process. The results demonstrate FSM’s superior performance in fault detection and fault diagnosis compared to the traditional SPM methods. In particular, the robust monitoring performance from FSM is achieved without any data preprocessing, trajectory alignment or synchronization required by the conventional SPM methods.more » « less
-
Abstract Predictive Maintenance (PdM) emerges as a critical task of Industry 4.0, driving operational efficiency, minimizing downtime, and reducing maintenance costs. However, real-world industrial environments present unsolved challenges, especially in predicting simultaneous and correlated faults under evolving conditions. Traditional batch-based and deep learning approaches for simultaneous fault prediction often fall short due to their assumptions of static data distributions and high computational demands, making them unsuitable for dynamic, resource-constrained systems. In response, we propose OEMLHAT (Online Ensemble of Multi-Label Hoeffding Adaptive Trees), a novel model tailored for real-time, multi-label fault prediction in non-stationary industrial settings. OEMLHAT introduces a scalable online ensemble architecture that integrates online bagging, dynamic feature subspacing, and adaptive output weighting. This design allows it to efficiently handle concept drift, high-dimensional input spaces, and label sparsity, key bottlenecks in existing PdM solutions. Experimental results on three public multi-label PdM case studies demonstrate substantial improvements in predictive performance of OEMLHAT over previous batch-based and online proposals for multi-label classification, particularly with an average improvement in micro-averaged F1-score of 18.49% over the second most-accurate batch-based proposal and of 8.56% in the case of the second best online model. By addressing a critical gap in online multi-label learning for PdM, this work provides a robust and interpretable solution for next-generation industrial monitoring systems for fault detection, particularly for rare and concurrent failures.more » « less
-
Modern industrial processes are continuously monitored by a large number of sensors. Despite having access to large volumes of historical and online sensor data, industrial practitioners still face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we present a novel framework named "FARM" for Fast, Accurate, and Robust online process Monitoring. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams, and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike existing general-purpose process monitoring frameworks, FARM's unique hierarchical architecture decomposes process monitoring into two fault detection and diagnosis, each of which is conducted by targeted algorithms. Here, we test and validate the performance of our FARM monitoring framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art benchmark fault detection methods. In terms of fault classification diagnosis, we show that our modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the TEP dataset. Compared with the results of standard SVM trained directly on the original dataset, our modified SVM improves the fault classification accuracy significantly.more » « less
-
Sensors are used to monitor various parameters in many real-world applications. Sudden changes in the underlying patterns of the sensors readings may represent events of interest. Therefore, event detection, an important temporal version of outlier detection, is one of the primary motivating applications in sensor networks. This work describes the implementation of a real-time outlier detection that uses an Autoencoder-LSTM neural-network accelerator implemented on the Xilinx PYNQ-Z1 development board. The implemented accelerator consists of a fine-tuned Autoencoder to extract the latent features in sensor data followed by a Long short-term memory (LSTM) network to predict the next step and detect outliers in real-time. The implemented design achieves 2.06 ms minimum latency and 85.9 GOp/s maximum throughput. The low latency and 0.25 W power consumption of the Autoencoder-LSTM outlier detector makes it suitable for resource-constrained computing platforms.more » « less
An official website of the United States government
