skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and Implementation of Autoencoder-LSTM Accelerator for Edge Outlier Detection
Sensors are used to monitor various parameters in many real-world applications. Sudden changes in the underlying patterns of the sensors readings may represent events of interest. Therefore, event detection, an important temporal version of outlier detection, is one of the primary motivating applications in sensor networks. This work describes the implementation of a real-time outlier detection that uses an Autoencoder-LSTM neural-network accelerator implemented on the Xilinx PYNQ-Z1 development board. The implemented accelerator consists of a fine-tuned Autoencoder to extract the latent features in sensor data followed by a Long short-term memory (LSTM) network to predict the next step and detect outliers in real-time. The implemented design achieves 2.06 ms minimum latency and 85.9 GOp/s maximum throughput. The low latency and 0.25 W power consumption of the Autoencoder-LSTM outlier detector makes it suitable for resource-constrained computing platforms.  more » « less
Award ID(s):
2016727
PAR ID:
10357920
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE Workshop on Signal Processing Systems (SiPS)
Page Range / eLocation ID:
134 to 139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has an imbalanced nature. Moreover, we designed a deep learning model that combines a convolution-based feature extractor and deep neural network blocks, the LSTM block, and the transformer encoder block, followed by a position-wise feedforward layer. We found that combining the input sequence with the convolution-learned features of different kernels tends to increase the performance of the fall-detection model. Last, we analyzed that the sensor signals collected by both accelerometer and gyroscope sensors can be leveraged to develop an effective classifier that can accurately detect falls, especially differentiating falls from near-falls. Furthermore, we also used data from sixteen different body parts and compared them to determine the better sensor position for fall-detection methods. We found that the shank is the optimal position for placing our sensors, with an F1 score of 0.97, and this could help other researchers collect high-quality fall datasets. 
    more » « less
  2. Ever-growing edge applications often require short processing latency and high energy efficiency to meet strict timing and power budget. In this work, we propose that the compact long short-term memory (LSTM) model can approximate conventional acausal algorithms with reduced latency and improved efficiency for real-time causal prediction, especially for the neural signal processing in closed-loop feedback applications. We design an LSTM inference accelerator by taking advantage of the fine-grained parallelism and pipelined feedforward and recurrent updates. We also propose a bit-sparse quantization method that can reduce the circuit area and power consumption by replacing the multipliers with the bit-shift operators. We explore different combinations of pruning and quantization methods for energy-efficient LSTM inference on datasets collected from the electroencephalogram (EEG) and calcium image processing applications. Evaluation results show that our proposed LSTM inference accelerator can achieve 1.19 GOPS/mW energy efficiency. The LSTM accelerator with 2-sbit/16-bit sparse quantization and 60% sparsity can reduce the circuit area and power consumption by 54.1% and 56.3%, respectively, compared with a 16-bit baseline implementation. 
    more » « less
  3. Advances in sensor technology have enabled the collection of largescale datasets. Such datasets can be extremely noisy and often contain a significant amount of outliers that result from sensor malfunction or human operation faults. In order to utilize such data for real-world applications, it is critical to detect outliers so that models built from these datasets will not be skewed by outliers. In this paper, we propose a new outlier detection method that utilizes the correlations in the data (e.g., taxi trip distance vs. trip time). Different from existing outlier detection methods, we build a robust regression model that explicitly models the outliers and detects outliers simultaneously with the model fitting. We validate our approach on real-world datasets against methods specifically designed for each dataset as well as the state of the art outlier detectors. Our outlier detection method achieves better performances, demonstrating the robustness and generality of our method. Last, we report interesting case studies on some outliers that result from atypical events. 
    more » « less
  4. In the rapidly evolving landscape of 5G technology, safeguarding Radio Frequency (RF) environments against sophisticated intrusions is paramount, especially in dynamic spectrum access and management. This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder for the detection of anomalous spectral activities in 5G networks at the waveform level. Our approach, grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks. The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoen-coders, enabling a more nuanced understanding of temporal dependencies and contextual relationships within the RF spectrum. Utilizing a simulated 5G Radio Access Network (RAN) test-bed constructed with srsRAN 5G and Software Defined Radios (SDRs), we generated a comprehensive stream of data that reflects real-world RF spectrum conditions and attack scenarios. The model is trained to reconstruct standard signal behavior, establishing a normative baseline against which deviations, indicative of security threats, are identified. The proposed architecture is designed to balance between detection precision and computational efficiency, so the LSTM network, enriched with self-attention, continues to optimize for minimal execution latency and power consumption. Conducted on a real-world SDR-based testbed, our results demonstrate the model's improved performance and accuracy in threat detection. 
    more » « less
  5. In this paper, we evaluate the use of a trained Long Short-Term Memory (LSTM) network as a surrogate for a Euler–Bernoulli beam model, and then we describe and characterize an FPGA-based deployment of the model for use in real-time structural health monitoring applications. The focus of our efforts is the DROPBEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research) dataset, which was generated as a benchmark for the study of real-time structural modeling applications. The purpose of DROPBEAR is to evaluate models that take vibration data as input and give the initial conditions of the cantilever beam on which the measurements were taken as output. DROPBEAR is meant to serve an exemplar for emerging high-rate “active structures” that can be actively controlled with feedback latencies of less than one microsecond. Although the Euler–Bernoulli beam model is a well-known solution to this modeling problem, its computational cost is prohibitive for the time scales of interest. It has been previously shown that a properly structured LSTM network can achieve comparable accuracy with less workload, but achieving sub-microsecond model latency remains a challenge. Our approach is to deploy the LSTM optimized specifically for latency on FPGA. We designed the model using both high-level synthesis (HLS) and hardware description language (HDL). The lowest latency of 1.42 µS and the highest throughput of 7.87 Gops/s were achieved on Alveo U55C platform for HDL design. 
    more » « less