Abstract Transcription rates are regulated by the interactions between RNA polymerase, sigma factor, and promoter DNA sequences in bacteria. However, it remains unclear how non-canonical sequence motifs collectively control transcription rates. Here, we combine massively parallel assays, biophysics, and machine learning to develop a 346-parameter model that predicts site-specific transcription initiation rates for any σ70promoter sequence, validated across 22132 bacterial promoters with diverse sequences. We apply the model to predict genetic context effects, design σ70promoters with desired transcription rates, and identify undesired promoters inside engineered genetic systems. The model provides a biophysical basis for understanding gene regulation in natural genetic systems and precise transcriptional control for engineering synthetic genetic systems.
more »
« less
Long G4-rich enhancers target promoters via a G4 DNA-based mechanism
Abstract Several studies have now described instances where G-rich sequences in promoters and enhancers regulate gene expression through forming G-quadruplex (G4) structures. Relatedly, our group recently identified 301 long genomic stretches significantly enriched for minimal G4 motifs (LG4s) in humans and found the majority of these overlap annotated enhancers, and furthermore, that the promoters regulated by these LG4 enhancers are similarly enriched with G4-capable sequences. While the generally accepted model for enhancer:promoter specificity maintains that interactions are dictated by enhancer- and promoter-bound transcriptional activator proteins, the current study tested an alternative hypothesis: that LG4 enhancers interact with cognate promoters via a direct G4:G4 DNA-based mechanism. This work establishes the nuclear proximity of LG4 enhancer:promoter pairs, biochemically demonstrates the ability of individual LG4 single-stranded DNAs (ssDNAs) to directly interact target promoter ssDNAs, and confirms that these interactions, as well as the ability of LG4 enhancers to activate target promoters in culture, are mediated by G4 DNA.
more »
« less
- Award ID(s):
- 2223547
- PAR ID:
- 10559467
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 53
- Issue:
- 2
- ISSN:
- 0305-1048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pairs of interacting transcription factors (TFs) have previously been shown to bind to enhancers and promoters and contribute to their physical interactions. However, to date, we have limited knowledge about such TF pairs. To fill this void, we systematically studied the co-occurrence of TF-binding motifs in interacting enhancer–promoter (EP) pairs in seven human cell lines. We discovered 423 motif pairs that significantly co-occur in enhancers and promoters of interacting EP pairs. We demonstrated that these motif pairs are biologically meaningful and significantly enriched with motif pairs of known interacting TF pairs. We also showed that the identified motif pairs facilitated the discovery of the interacting EP pairs. The developed pipeline, EPmotifPair, together with the predicted motifs and motif pairs, is available at https://doi.org/10.6084/m9.figshare.14192000. Our study provides a comprehensive list of motif pairs that may contribute to EP physical interactions, which facilitate generating meaningful hypotheses for experimental validation.more » « less
-
Biolayer interferometry (BLI) is a powerful tool that enables direct observations of protein-G4 interactions in real-time. In this article, we discuss the crucial aspects in conducting a BLI experiment by using the TAR DNA-binding protein (TDP43) and a G4 DNA formed by (GGGGCC)4 as a sample application. We also describe the necessary precautions in designing the DNA substrate and evaluating the signal contributions arising from nonspecific binding interactions. A comprehensive guide is included that details the necessary materials and reagents, experimental procedures, and data analysis methods for researchers who are interested in using BLI for similar studies. The insights provided in this article will allow researchers to harness the potential of BLI and unravel the complexities of protein-G4 interactions with precision and confidence.more » « less
-
Faust, Karoline (Ed.)ABSTRACT Much of our knowledge of bacterial transcription initiation has been derived from studying the promoters of Escherichia coli and Bacillus subtilis . Given the expansive diversity across the bacterial phylogeny, it is unclear how much of this knowledge can be applied to other organisms. Here, we report on bioinformatic analyses of promoter sequences of the primary σ factor (σ 70 ) by leveraging publicly available transcription start site (TSS) sequencing data sets for nine bacterial species spanning five phyla. This analysis identifies previously unreported differences in the −35 and −10 elements of σ 70 -dependent promoters in several groups of bacteria. We found that Actinobacteria and Betaproteobacteria σ 70 -dependent promoters lack the TTG triad in their −35 element, which is predicted to be conserved across the bacterial phyla. In addition, the majority of the Alphaproteobacteria σ 70 -dependent promoters analyzed lacked the thymine at position −7 that is highly conserved in other phyla. Bioinformatic examination of the Alphaproteobacteria σ 70 -dependent promoters identifies a significant overrepresentation of essential genes and ones encoding proteins with common cellular functions downstream of promoters containing an A, C, or G at position −7. We propose that transcription of many σ 70 -dependent promoters in Alphaproteobacteria depends on the transcription factor CarD, which is an essential protein in several members of this phylum. Our analysis expands the knowledge of promoter architecture across the bacterial phylogeny and provides new information that can be used to engineer bacteria for use in medical, environmental, agricultural, and biotechnological processes. IMPORTANCE Transcription of DNA to RNA by RNA polymerase is essential for cells to grow, develop, and respond to stress. Understanding the process and control of transcription is important for health, disease, the environment, and biotechnology. Decades of research on a few bacteria have identified promoter DNA sequences that are recognized by the σ subunit of RNA polymerase. We used bioinformatic analyses to reveal previously unreported differences in promoter DNA sequences across the bacterial phylogeny. We found that many Actinobacteria and Betaproteobacteria promoters lack a sequence in their −35 DNA recognition element that was previously assumed to be conserved and that Alphaproteobacteria lack a thymine residue at position −7, also previously assumed to be conserved. Our work reports important new information about bacterial transcription, illustrates the benefits of studying bacteria across the phylogenetic tree, and proposes new lines of future investigation.more » « less
-
The dynamic landscape of non-canonical DNA G-quadruplex (G4) folding into G-triplex intermediates has led to the study of G-triplex structures and their ability to serve as peroxidase-mimetic DNAzymes. Here we report the formation, stability, and catalytic activity of a 5′-truncated c-MYC promoter region G-triplex, c-MYC-G3. Through circular dichroism, we demonstrated that c-MYC-G3 adopts a stable, parallel-stranded G-triplex conformation. The chemiluminescent oxidation of luminol by the peroxidase mimicking DNAzyme activity of c-MYC-G3 was increased in the presence of Ca2+ ions. We utilized surface plasmon resonance to characterize both c-MYC-G3 G-triplex formation and its interaction with hemin. The detailed study of c-MYC-G3 and its ability to form a G-triplex structure and its DNAzyme activity identifies issues that can be addressed in future G-triplex DNAzyme designs.more » « less
An official website of the United States government
