Abstract Circular RNAs are associated with numerous diseases and recent evidence shows that they can be translated into proteins after undergoing RNA modification. Circular RNAs differ from their ‘linear’ mRNA counterparts in their backsplice site, allowing selective targeting using RNA interference, which however limits the options to place the siRNA. We tested all possible siRNAs against the backsplice site of the circTau 12->7 RNA after it was subjected to adenosine to inosine RNA editing, a modification that promotes translation of the circRNA. Most siRNAs reduced the circRNA and protein abundance, which however did not correlate. We identified an siRNA with an IC50 of 750 pmol efficacy on protein expression. This circRNA fulfilled six of the eight criteria for siRNAs targeting mRNAs. Thus, modified circRNAs expressing protein can be targeted with siRNAs, but their optimal sequence needs to be determined empirically.
more »
« less
Translation of circular RNAs
Abstract Circular RNAs (circRNAs) are covalently closed RNAs that are present in all eukaryotes tested. Recent RNA sequencing (RNA-seq) analyses indicate that although generally less abundant than messenger RNAs (mRNAs), over 1.8 million circRNA isoforms exist in humans, much more than the number of currently known mRNA isoforms. Most circRNAs are generated through backsplicing that depends on pre-mRNA structures, which are influenced by intronic elements, for example, primate-specific Alu elements, leading to species-specific circRNAs. CircRNAs are mostly cytosolic, stable and some were shown to influence cells by sequestering miRNAs and RNA-binding proteins. We review the increasing evidence that circRNAs are translated into proteins using several cap-independent translational mechanisms, that include internal ribosomal entry sites, N6-methyladenosine RNA modification, adenosine to inosine RNA editing and interaction with the eIF4A3 component of the exon junction complex. CircRNAs are translated under conditions that favor cap-independent translation, notably in cancer and generate proteins that are shorter than mRNA-encoded proteins, which can acquire new functions relevant in diseases.
more »
« less
- Award ID(s):
- 2221921
- PAR ID:
- 10559633
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 53
- Issue:
- 1
- ISSN:
- 0305-1048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
At least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occurs through backsplicing from exon 12 to either exon 10 or exon 7. We analyzed representative mutants and found that five FTDP-17 mutations increase the formation of 12➔7 circRNA and three different mutations increase the amount of 12➔10 circRNA. CircRNAs are translated after undergoing adenosine to inosine RNA editing, catalyzed by ADAR enzymes. We found that the interferon induced ADAR1-p150 isoform has the strongest effect on circTau RNA translation. ADAR1-p150 activity had a stronger effect on circTau RNA expression and strongly decreased 12➔7 circRNA, but unexpectedly increased 12➔10 circRNA. In both cases, ADAR-activity strongly promoted translation of circTau RNAs. Unexpectedly, we found that the 12➔7 circTau protein interacts with eukaryotic initiation factor 4B (eIF4B), which is reduced by four FTDP-17 mutations located in the second microtubule domain. These are the first studies of the effect of human mutations on circular RNA formation and translation. They show that point mutations influence circRNA expression levels, likely through changes in pre-mRNA structures. The effect of the mutations is surpassed by editing of the circular RNAs, leading to their translation. Thus, circular RNAs and their editing status should be considered when analyzing FTDP-17 mutations.more » « less
-
Abstract Previously, we have shown that apoplastic wash fluid (AWF) purified from Arabidopsis leaves contains small RNAs (sRNAs). To investigate whether these sRNAs are encapsulated inside extracellular vesicles (EVs), we treated EVs isolated from Arabidopsis leaves with the protease trypsin and RNase A, which should degrade RNAs located outside EVs but not those located inside. These analyses revealed that apoplastic RNAs are mostly located outside and are associated with proteins. Further analyses of these extracellular RNAs (exRNAs) revealed that they include both sRNAs and long noncoding RNAs (lncRNAs), including circular RNAs (circRNAs). We also found that exRNAs are highly enriched in the posttranscriptional modification N6-methyladenine (m6A). Consistent with this, we identified a putative m6A-binding protein in AWF, GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7), as well as the sRNA-binding protein ARGONAUTE2 (AGO2). These two proteins coimmunoprecipitated with lncRNAs, including circRNAs. Mutation of GRP7 or AGO2 caused changes in both the sRNA and lncRNA content of AWF, suggesting that these proteins contribute to the secretion and/or stabilization of exRNAs. We propose that exRNAs located outside of EVs mediate host-induced gene silencing, rather than RNA located inside EVs.more » « less
-
Protein translation is globally downregulated under stress conditions. Many proteins that are synthesized under stress conditions use a cap-independent translation initiation pathway. A subset of cellular mRNAs that encode for these proteins contain stable secondary structures within their 5′UTR, and initiate cap-independent translation using elements called cap-independent translation enhancers or internal ribosome entry sites within their 5′UTRs. The interaction among initiation factors such as eukaryotic initiation factor 4E (eIF4E), eIF4A, and eIF4GI, especially in regulating the eIF4F complex during noncanonical translation initiation of different 5′UTR mRNAs, is poorly understood. Here, equilibrium-binding assays, CD studies and in vitro translation assays were used to elucidate the recruitment of these initiation factors to the highly structured 5′UTRs of fibroblast-growth factor 9 (FGF-9) and hypoxia inducible factor 1 subunit alpha (HIF-1α) encoding mRNAs. We showed that eIF4A and eIF4E enhanced eIF4GI’s binding affinity to the uncapped 5′UTR of HIF-1α mRNA, inducing conformational changes in the protein/RNA complex. In contrast, these factors have no effect on the binding of eIF4GI to the 5′UTR of FGF-9 mRNA. Recently, Izidoro et al. reported that the interaction of 42nt unstructured RNA to human eIF4F complex is dominated by eIF4E and ATP-bound state of eIF4A. Here, we show that structured 5′UTR mRNA binding mitigates this requirement. Based on these observations, we describe two possible cap-independent translation mechanisms for FGF-9 and HIF-1α encoding mRNAs used by cells to mitigate cellular stress conditions.more » « less
-
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.more » « less
An official website of the United States government
