Given a weighted, ordered query set\(Q\)and a partition of\(Q\)into classes, we study the problem of computing a minimum-cost decision tree that, given any query\(q\in Q\), uses equality tests and less-than tests to determine\(q\)'s class. Such a tree can be faster and smaller than a conventional search tree and smaller than a lookup table (both of which must identify\(q\), not just its class). We give the first polynomial-time algorithm for the problem. The algorithm extends naturally to the setting where each query has multiple allowed classes.
more »
« less
Towards Recognizing Food Types for Unseen Subjects
Recognizing food types through sensor signals for unseen users remains remarkably challenging, despite extensive recent studies. The efficacy of prior machine learning techniques is dwarfed by giant variations of data collected from multiple participants, partly because users have varied chewing habits and wear sensor devices in various manners. This work treats the problem as an instance of the domain adaptation problem, where each user represents a domain. We develop the first multi-source domain adaptation (MSDA) method for food-typing recognition, which consists of three major components: stratified normalization, a multi-source domain adaptor, and adaptive ensemble learning. New techniques are developed for each component. Using a real-world dataset comprised of 15 participants, we demonstrate that our method achieves\(1.33\times\)to\(2.13\times\)improvement in accuracy compared with nine state-of-the-art MSDA baselines. Additionally, we perform an in-depth ablation study to examine the behavior of each component and confirm their efficacy.
more »
« less
- PAR ID:
- 10559639
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Computing for Healthcare
- ISSN:
- 2637-8051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces a new data-structural object that we call the tiny pointer. In many applications, traditional\(\log n\)-bit pointers can be replaced with\(o(\log n)\)-bit tiny pointers at the cost of only a constant-factor time overhead and a small probability of failure. We develop a comprehensive theory of tiny pointers, and give optimal constructions for both fixed-size tiny pointers (i.e., settings in which all of the tiny pointers must be the same size) and variable-size tiny pointers (i.e., settings in which the average tiny-pointer size must be small, but some tiny pointers can be larger). If a tiny pointer references an item in an array filled to load factor\(1-\delta\), then the optimal tiny-pointer size is\(\Theta(\log\log\log n+\log\delta^{-1})\)bits in the fixed-size case, and\(\Theta(\log\delta^{-1})\)expected bits in the variable-size case. Our tiny-pointer constructions also require us to revisit several classic problems having to do with balls and bins; these results may be of independent interest. Using tiny pointers, we apply tiny pointers to five classic data-structure problems. We show that:A data structure storing\(n\)\(v\)-bit values for\(n\)keys with constant-factor time modifications/queries can be implemented to take space\(nv+O(n\log^{(r)}n)\)bits, for any constant\(r\gt0\), as long as the user stores a tiny pointer of expected size\(O(1)\)with each key—here,\(\log^{(r)}n\)is the\(r\)-th iterated logarithm.Any binary search tree can be made succinct, meaning that it achieves\((1+o(1))\)times the optimal space, with constant-factor time overhead, and can even be made to be within\(O(n)\)bits of optimal if we allow for\(O(\log^{*}n)\)-time modifications—this holds even for rotation-based trees such as the splay tree and the red-black tree.Any fixed-capacity key-value dictionary can be made stable (i.e., items do not move once inserted) with constant-factor time overhead and\((1+o(1))\)-factor space overhead.Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with constant-factor time overhead and with an additional space consumption of\(\log^{(r)}n+O(\log j)\)bits per\(j\)-bit value for an arbitrary constant\(r\gt0\)of our choice.Given an external-memory array\(A\)of size\((1+\varepsilon)n\)containing a dynamic set of up to\(n\)key-value pairs, it is possible to maintain an internal-memory stash of size\(O(n\log\varepsilon^{-1})\)bits so that the location of any key-value pair in\(A\)can be computed in constant time (and with no IOs). In each case tiny pointers allow for us to take a natural space-inefficient solution that uses pointers and make it space-efficient for free.more » « less
-
Stream processing, which involves real-time computation of data as it is created or received, is vital for various applications, specifically wireless communication. The evolving protocols, the requirement for high-throughput, and the challenges of handling diverse processing patterns make it demanding. Traditional platforms grapple with meeting real-time throughput and latency requirements due to large data volume, sequential and indeterministic data arrival, and variable data rates, leading to inefficiencies in memory access and parallel processing. We present Canalis, a throughput-optimized framework designed to address these challenges, ensuring high-performance while achieving low energy consumption. Canalis is a hardware-software co-designed system. It includes a programmable spatial architecture, Flux Stream Processing Unit (FluxSPU), proposed by this work to enhance data throughput and energy efficiency. FluxSPU is accompanied by a software stack that eases the programming process. We evaluated Canalis with eight distinct benchmarks. When compared to CPU and GPU in mobile SoC to demonstrate the effectiveness of domain specialization, Canalis achieves an average speedup of 13.4\(\times\)and 6.6\(\times\), and energy savings of 189.8\(\times\)and 283.9\(\times\), respectively. In contrast to equivalent ASICs of the benchmarks, the average energy overhead of Canalis is within 2.4\(\times\), successfully maintaining generalizations without incurring significant overhead.more » « less
-
A constraint satisfaction problem (CSP),\(\textsf {Max-CSP}(\mathcal {F})\), is specified by a finite set of constraints\(\mathcal {F}\subseteq \lbrace [q]^k \rightarrow \lbrace 0,1\rbrace \rbrace\)for positive integersqandk. An instance of the problem onnvariables is given bymapplications of constraints from\(\mathcal {F}\)to subsequences of thenvariables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the (γ ,β)-approximation version of the problem for parameters 0 ≤ β ≤ γ ≤ 1, the goal is to distinguish instances where at least γ fraction of the constraints can be satisfied from instances where at most β fraction of the constraints can be satisfied. In this work, we consider the approximability of this problem in the context of sketching algorithms and give a dichotomy result. Specifically, for every family\(\mathcal {F}\)and every β < γ, we show that either a linear sketching algorithm solves the problem in polylogarithmic space or the problem is not solvable by any sketching algorithm in\(o(\sqrt {n})\)space. In particular, we give non-trivial approximation algorithms using polylogarithmic space for infinitely many constraint satisfaction problems. We also extend previously known lower bounds for general streaming algorithms to a wide variety of problems, and in particular the case ofq=k=2, where we get a dichotomy, and the case when the satisfying assignments of the constraints of\(\mathcal {F}\)support a distribution on\([q]^k\)with uniform marginals. Prior to this work, other than sporadic examples, the only systematic classes of CSPs that were analyzed considered the setting of Boolean variablesq= 2, binary constraintsk=2, and singleton families\(|\mathcal {F}|=1\)and only considered the setting where constraints are placed on literals rather than variables. Our positive results show wide applicability of bias-based algorithms used previously by [47] and [41], which we extend to include richer norm estimation algorithms, by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [56], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results. In particular, previous works used Fourier analysis over the Boolean cube to initiate their results and the results seemed particularly tailored to functions on Boolean literals (i.e., with negations). Our techniques surprisingly allow us to get to generalq-ary CSPs without negations by appealing to the same Fourier analytic starting point over Boolean hypercubes.more » « less
-
Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to\(152.3\times\)and\(6.4\times\)energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to\(968.2\times\)energy-delay product gains compared to the FPGA implementation.more » « less
An official website of the United States government

