skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 18, 2025

Title: Opportunities and Challenges in Service Layer Traffic Engineering
Optimizing request routing in large microservice-based applications is difficult, especially when applications span multiple geo-distributed clusters. In this paper, inspired by ideas from network traffic engineering, we propose Service Layer Traffic Engineering (SLATE), a new framework for request routing in microservices that span multiple clusters. SLATE leverages global knowledge of cluster states and multi-hop application graphs to centrally control the flow of requests in order to optimize end-to-end application latency and cost. Realizing such a system requires tackling several technical challenges unique to service layer, such as accounting for different request traffic classes, multi-hop call trees, and application latency profiles. We identify such challenges and build a preliminary prototype that addresses some of them. Preliminary evaluations of our prototype show how SLATE outperforms the state-of-the-art global load balancing approach (used by Meta’s Service Router and Google’s Traffic Director) by up to 3.5× in average latency and reduces egress bandwidth cost by up to 11.6×.  more » « less
Award ID(s):
2312714
PAR ID:
10559650
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400712722
Page Range / eLocation ID:
352 to 359
Format(s):
Medium: X
Location:
Irvine CA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms. 
    more » « less
  2. Reducing tail latency has become a crucial issue for optimizing the performance of online cloud services and distributed applications. In distributed applications, there are many causes of high end-to-end tail latency, including operating system delays, request re-ordering due to fan-out/fanin, and network congestion. Although recent research has focused on reducing tail latency for individual application components, such as by replicating requests and scheduling, in this paper, we argue for a holistic approach for reducing the end-to-end tail latency across application components. We propose TailClipper, a distributed scheduler that tags each arriving request with an arrival timestamp, and propagates it across the microservices' call chain. TailClipper then uses arrival timestamps to implement an oldest request first scheduler that combines global first-come first serve with a limited form of processor sharing to reduce end-to-end tail latency. In doing so, TailClipper can counter the performance degradation caused by request reordering in multi-tiered and microservices-based applications. We implement TailClipper as a userspace Linux scheduler and evaluate it using cloud workload traces and a real-world microservices application. Compared to state-of-the-art schedulers, our experiments reveal that TailClipper improves the 99th percentile response time by up to 81%, while also improving the mean response time and the system throughput by up to 54% and 29% respectively under high loads. 
    more » « less
  3. null (Ed.)
    Low-latency online services have strict Service Level Objectives (SLOs) that require datacenter systems to support high throughput at microsecond-scale tail latency. Dataplane operating systems have been designed to scale up multi-core servers with minimal overhead for such SLOs. However, as application demands continue to increase, scaling up is not enough, and serving larger demands requires these systems to scale out to multiple servers in a rack. We present RackSched, the first rack-level microsecond-scale scheduler that provides the abstraction of a rack-scale computer (i.e., a huge server with hundreds to thousands of cores) to an external service with network-system co-design. The core of RackSched is a two-layer scheduling framework that integrates inter-server scheduling in the top-of-rack (ToR) switch with intra-server scheduling in each server. We use a combination of analytical results and simulations to show that it provides near-optimal performance as centralized scheduling policies, and is robust for both low-dispersion and high-dispersion workloads. We design a custom switch data plane for the inter-server scheduler, which realizes power-of-k- choices, ensures request affinity, and tracks server loads accurately and efficiently. We implement a RackSched prototype on a cluster of commodity servers connected by a Barefoot Tofino switch. End-to-end experiments on a twelve-server testbed show that RackSched improves the throughput by up to 1.44x, and scales out the throughput near linearly, while maintaining the same tail latency as one server until the system is saturated. 
    more » « less
  4. Network service mesh architectures, by interconnecting cloud clusters, provide access to services across distributed infrastructures. Typically, services are replicated across clusters to ensure resilience. However, end-to-end service performance varies mainly depending on the service loads experienced by individual clusters. Therefore, a key challenge is to optimize end-to-end service performance by routing service requests to clusters with the least service processing/response times. We present a two-phase approach that combines an optimized multi-layer optical routing system with service mesh performance costs to improve end-to-end service performance. Our experimental strategy shows that leveraging a multi-layer architecture in combination with service performance information improves end-to-end performance. We evaluate our approach by testing our strategy on a service mesh layer overlay on a modified continental united states (CONUS) network topology. 
    more » « less
  5. We investigate the use of SmartNIC-accelerated servers to execute microservice-based applications in the data center. By offloading suitable microservices to the SmartNIC’s low-power processor, we can improve server energy-efficiency without latency loss. However, as a heterogeneous computing substrate in the data path of the host, SmartNICs bring several challenges to a microservice platform: network traffic routing and load balancing, microservice placement on heterogeneous hardware, and contention on shared SmartNIC resources. We present E3, a microservice execution platform for SmartNIC-accelerated servers. E3 follows the design philosophies of the Azure Service Fabric microservice platform and extends key system components to a SmartNIC to address the above-mentioned challenges. E3 employs three key techniques: ECMP-based load balancing via SmartNICs to the host, network topology-aware microservice placement, and a data-plane orchestrator that can detect SmartNIC overload. Our E3 prototype using Cavium LiquidIO SmartNICs shows that SmartNIC offload can improve cluster energy-efficiency up to 3× and cost efficiency up to 1.9× at up to 4% latency cost for common microservices, including real-time analytics, an IoT hub, and virtual network functions. 
    more » « less