skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2312714

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove a nonasymptotic central limit theorem (CLT) for vector-valued martingale differences using Stein’s method, and we use Poisson’s equation to extend the result to functions of Markov chains. We then show that these results can be applied to establish a nonasymptotic CLT for temporal difference learning with averaging. Funding: This work was supported by National Science Foundation [Grants CNS 23-12714, CCF 22-07547, and CNS 21-06801] and Air Force Office of Scientific Research [Grant FA9550-24-1-0002]. 
    more » « less
    Free, publicly-accessible full text available October 3, 2026
  2. Optimizing request routing in large microservice-based applications is difficult, especially when applications span multiple geo-distributed clusters. In this paper, inspired by ideas from network traffic engineering, we propose Service Layer Traffic Engineering (SLATE), a new framework for request routing in microservices that span multiple clusters. SLATE leverages global knowledge of cluster states and multi-hop application graphs to centrally control the flow of requests in order to optimize end-to-end application latency and cost. Realizing such a system requires tackling several technical challenges unique to service layer, such as accounting for different request traffic classes, multi-hop call trees, and application latency profiles. We identify such challenges and build a preliminary prototype that addresses some of them. Preliminary evaluations of our prototype show how SLATE outperforms the state-of-the-art global load balancing approach (used by Meta’s Service Router and Google’s Traffic Director) by up to 3.5× in average latency and reduces egress bandwidth cost by up to 11.6×. 
    more » « less
    Free, publicly-accessible full text available November 18, 2025
  3. Reinforcement Learning from Human Feedback (RLHF) has achieved impressive empirical successes while relying on a small amount of human feedback. However, there is limited theoretical justification for this phenomenon. Additionally, most recent studies focus on value-based algorithms despite the recent empirical successes of policy-based algorithms. In this work, we consider an RLHF algorithm based on policy optimization (PO-RLHF). The algorithm is based on the popular Policy Cover-Policy Gradient (PC-PG) algorithm, which assumes knowledge of the reward function. In PO-RLHF, knowledge of the reward function is not assumed and the algorithm relies on trajectory-based comparison feedback to infer the reward function. We provide performance bounds for PO-RLHF with low query complexity, which provides insight into why a small amount of human feedback may be sufficient to get good performance with RLHF. A key novelty is our trajectory-level elliptical potential analysis technique used to infer reward function parameters when comparison queries rather than reward observations are used. We provide and analyze algorithms in two settings: linear and neural function approximation, PG-RLHF and NN-PG-RLHF, respectively. 
    more » « less
  4. Cascading bandits have gained popularity in recent years due to their applicability to recommendation systems and online advertising. In the cascading bandit model, at each timestep, an agent recommends an ordered subset of items (called an item list) from a pool of items, each associated with an unknown attraction probability. Then, the user examines the list, and clicks the first attractive item (if any), and after that, the agent receives a reward. The goal of the agent is to maximize the expected cumulative reward. However, the prior literature on cascading bandits ignores the influences of user states (e.g., historical behaviors) on recommendations and the change of states as the session proceeds. Motivated by this fact, we propose a generalized cascading RL framework, which considers the impact of user states and state transition into decisions. In cascading RL, we need to select items not only with large attraction probabilities but also leading to good successor states. This imposes a huge computational challenge due to the combinatorial action space. To tackle this challenge, we delve into the properties of value functions, and design an oracle BestPerm to efficiently find the optimal item list. Equipped with BestPerm, we develop two algorithms CascadingVI and CascadingBPI, which are both computation-efficient and sample-efficient, and provide near-optimal regret and sample complexity guarantees. Furthermore, we present experiments to show the improved computational and sample efficiencies of our algorithms compared to straightforward adaptations of existing RL algorithms in practice. 
    more » « less
  5. Microservice-based application deployments need to administer safety properties while serving requests. However, today such properties can be specified only in limited ways that can lead to overly permissive policies and the potential for illegitimate flow of information across microservices, or ad hoc policy implementations. We argue that a range of use cases require safety properties for the flow of requests across the whole microservice network, rather than only between adjacent hops. To begin specifying such expressive policies, we propose a system for declaring and deploying service tree policies. These policies are compiled down into declarative filters that are inserted into microservice deployment manifests. We use a light-weight dynamic monitor based enforcement mechanism, using ideas from automata theory. Experiments with our preliminary prototype show that we can capture a wide class of policies that we describe as case studies. 
    more » « less