skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2025

Title: Diversifying hierarchical ionic assembly by docking cations to anions as salt bridges
We expand the diversity of building blocks available for ionic assembly by introducing tertiary (3 ) ammonium cations into anion complexes. We use proton transfer between 3º amines and organo-phosphoric acids to generate H-bonding cations (R NH+) and anions (RHPO ) that co-assemble with cyanostar macrocycles into assemblies with 2:2:2 stoichiometry. At the heart is a supramolecular dimer where phosphate anions form salt bridges by H-bonding with cations.Unlike conventional ammonium cations,3,000 commercial amines provide diversity for high-throughput screening of 72 combinations (9 nitrogen bases and 8 acids), producing 13 privileged partners for quantitative assembly. Yields depend on the solvent and sterics of salt bridge formation. Ten more nitrogen bases connect to fluorophores (pyrene), photocatalysts (quinoline), drugs (Cipralex, Zytiga), and ionic liquids (imidazole). The synthesis and examination of 82 new salts exemplify how acid-base chemistry can open a pipeline to a diversity of building blocks for exploring hierarchical ionic assembly.  more » « less
Award ID(s):
2105848
PAR ID:
10559713
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Chem
ISSN:
2451-9294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutylammonium cations and mercaptoacetatotriphenylstannate(IV) anions. The bidentate binding mode of the mercaptoacetate ligand gives rise to a five-coordinated, ionic triphenyltin complex with a distortedcis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H...O(carboxylate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3). 
    more » « less
  2. The title three-dimensional metal–organic framework (MOF) compound, {(NH 4 ) 2 [Zn 2 (C 9 H 3 O 6 ) 2 ]·2C 5 H 9 NO} n , features an anionic framework constructed from Zn 2+ cations and benzene-1,3,5-tricarboxylate (BTC) organic anions. Charge balance is achieved by outer sphere ammonium cations formed by degradation of di- n -butylamine in the solvothermal synthesis of the compound. Binuclear {Zn 2 (COO) 2 } entities act as the framework's secondary building units. Each Zn II atom has a tetrahedral coordination environment with an O 4 set of donor atoms. The three-dimensional framework adopts a rutile-type topology and channels are filled in an alternating fashion with ordered and disordered 1-methylpyrrolidin-2-one solvent molecules and ammonium cations. The latter are held in the channels via four N—H...O hydrogen bonds, including three with the benzene-1,3,5-tricarboxylate ligands of the anionic framework and one with a 1-methylpyrrolidin-2-one solvent molecule. 
    more » « less
  3. While atmospheric particles affect health, visibility and climate, the details governing their formation and growth are poorly understood on a molecular level. A simple model system for understanding the interactions between the gas and particle phases is the reaction of bases with acids, both of which are common constituents of atmospheric particles. In the present study, uptake coefficients for the reactions of gas phase ammonia, methylamine, ethylamine, dimethylamine and trimethylamine with a series of solid dicarboxylic acids (diacids) were measured at 296 ± 1 K using a Knudsen cell interfaced to a quadrupole mass spectrometer. The uptake coefficients ( γ ) for a given amine follow an odd–even trend in carbon number of the diacid, and are larger for the odd carbon diacids. Values range from γ = 0.4 for ethylamine on malonic acid (C3) to less than ∼10 −6 for ammonia and all amines on adipic (C6) and pimelic (C7) acids. Basicity or structure of the amines/ammonia alone do not explain the effect of the base on uptake. The crystal structures of the diacids also play a key role, which is especially evident for malonic acid (C3). Evaporation of aqueous mixtures of amines/ammonia with odd carbon diacids show the formation of ionic liquids (ILs) or in some cases, metastable ILs that revert back to a stable solid salt upon complete evaporation of water. The trends with amine and diacid structure provide insight into the mechanisms of uptake and molecular interactions that control it, including the formation of ionic liquid layers in some cases. The diversity in the kinetics and mechanisms involved in this relatively simple model system illustrate the challenges in accurately representing such processes in atmospheric models. 
    more » « less
  4. A careful selection of organic and inorganic components enables the production of unusual structure types with promising practical properties by facile syntheses. In this paper, we describe novel supramolecular architectures comprising organic adamantane-like divalent building blocks and iodide or polyiodide anions. Highly acidic conditions facilitated the formation of a doubly protonated organic ligand out of 5,7-dimethyl-1,3-diazaadamantane that generates three different crystal structures with inorganic counterions. In these structures, cationic substructures are constructed by transforming neutral organic ligands into [(C 10 N 2 H 20 )I] + or [(C 10 N 2 H 20 )(H 2 O)] 2+ cations, which crystallize with charge-compensating iodine-based anions of different complexities. All three crystal structures are characterized by various noncovalent forces, ranging from strong (N)H⋯I, (O)H⋯I, and (N)H⋯O hydrogen bonds to secondary and weak I⋯I interactions. Raman and diffuse reflectance spectroscopy as well as DFT calculations were employed to describe the electronic structures and optical properties of new supramolecular architectures, with particular attention to the role of non-covalent interactions. 
    more » « less
  5. In the title double proton-transfer salt, C 12 H 12 N 2 2+ ·2C 8 H 7 O 4 − , consisting of a 1:2 ratio of 4,4'-(ethene-1,2-diyl)dipyridinium cations ( trans bipyridinium ethylene) to 2-hydroxy-3-methoxybenzoate anions ( o -vanillate), the complete cation is generated by crystallographic inversion symmetry and it is linked to adjacent o -vanillate anions by N—H...O hydrogen bonds, forming trimolecular assemblies. The trimers are linked by C—H...O hydrogen bonds as well as aromatic π–π stacking interactions into a three-dimensional network. The anion features an intramolecular O—H...O hydrogen bond. 
    more » « less