skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 18, 2025

Title: PbZrO3-based thin film capacitors with high energy storage efficiency
Antiferroelectric (Pb0.87Sr0.05Ba0.05La0.02)(Zr0.52Sn0.40Ti0.08)O3 thin film capacitors were fabricated for dielectric energy storage. Thin films with excellent crystal quality (FWHM 0.021°) were prepared on (100) SrRuO3/SrTiO3 substrates by pulsed laser deposition. The out-of-plane lattice constant of the thin film was 4.110 ± 0.001 Å. An average maximum recoverable energy storage density, 88 ± 17 J cm−3 with an efficiency of 85% ± 6% at 1 kHz and 80 ± 15 J cm−3 with an efficiency of 91% ± 4% at 10 kHz, was achieved at room temperature. The capacitor was fatigue resistant up to 106 cycles at an applied electric field of 2 MV cm−1. These properties are linked to a low level of hysteresis and slow polarization saturation. PbZrO3-derived oxide thin film capacitors are promising for high efficiency and low loss dielectric energy storage applications.  more » « less
Award ID(s):
2011839 2025439
PAR ID:
10559731
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
125
Issue:
21
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. HfO 2 -based antiferroelectric-like thin films are increasingly being considered for commercial devices. However, even with initial promise, the temperature sensitivity of electrical properties such as loss tangent and leakage current remains unreported. 50 nm thick, 4 at. % Al-doped HfO 2 thin films were synthesized via atomic layer deposition with both top and bottom electrodes being TiN or Pt. A study of their capacitance vs temperature showed that the Pt/Al:HfO 2 /Pt had a relative dielectric permittivity of 23.30 ± 0.06 at room temperature with a temperature coefficient of capacitance (TCC) of 78 ± 86 ppm/°C, while the TiN/Al:HfO 2 /TiN had a relative dielectric permittivity of 32.28 ± 0.14 at room temperature with a TCC of 322 ± 41 ppm/°C. The capacitance of both devices varied less than 6% over 1 to 1000 kHz from −125 to 125 °C. Both capacitors maintained loss tangents under 0.03 and leakage current densities of 10 −9 –10 −7 A/cm 2 between −125 and 125 °C. The TiN/Al:HfO 2 /TiN capacitor maintained an energy storage density (ESD) of 18.17 ± 0.79 J/cm 3 at an efficiency of 51.79% ± 2.75% over the −125 to 125 °C range. The Pt/Al:HfO 2 /Pt capacitor also maintained a stable ESD of 9.83 ± 0.26 J/cm 3 with an efficiency of 62.87% ± 3.00% over the same temperature range. Such low losses in both capacitors along with their thermal stability make antiferroelectric-like, Al-doped HfO 2 thin films a promising material for temperature-stable microelectronics. 
    more » « less
  2. We developed ultra-high energy storage density capacitors using a new class of lead-free bismuth pyrochlorebased dielectric film material systems with high breakdown strength and reliability. The 2 μm-thick pyrochlore ceramic film capacitors have demonstrated ultra-high energy densities around 90 J/cm3 with very low energy loss below 3%, which is achieved by the combination of high permittivity, pseudo-linear dielectric characteristics, and high breakdown electric field over 4.5 MV/cm. Particularly, these pyrochlore ceramic films can endure voltage strength up to ~900 V. These noteworthy pyrochlore ceramic films are fabricated by the lowcost chemical solution deposition process which allows dielectric films to be processed on standard platinized silicon wafers. This new class of capacitors can satisfy the emergent needs for significant reduction in size and weight of capacitors with high energy storage capability in power electronics, electric vehicles, and energy storage in sustainable energy systems. Our research provides a unique and economical platform for the processing of this useful pyrochlore material in large volume for eco-friendly energy applications. 
    more » « less
  3. Abstract Polyvinylidene fluoride (PVDF) is a semicrystalline polymer used in thin‐film dielectric capacitors because of its inherently high dielectric constant and low loss tangent. Its dielectric constant can be increased by the formation and alignment of its β‐phase crystalline structure, which can be facilitated by 2D nanofillers. 2D carbides and nitrides, MXenes, are promising candidates due to their notable dielectric permittivity and ability to increase interfacial polarization. Still, their mixing is challenging due to weak interfacial interactions and poor dispersibility of MXenes in PVDF. This work explores a novel method for delaminating Ti3C2TxMXene directly into organic solvents while maintaining flake size and quality, as well as the use of a non‐solvent‐induced phase separation method for producing both dense and porous PVDF‐MXene composite films. A deeper understanding of dielectric behavior in these composites is reached by examining MXenes with both mixed and pure chlorine terminations in PVDF matrices. Thin‐film capacitors fabricated from these composites display ultrahigh discharge energy density, exceeding 45 J cm−3with 95% efficiency. The PVDF‐MXene composites are also processed using a green and sustainable solvent, propylene carbonate. 
    more » « less
  4. We report on the dielectric response of epitaxial BaSnO3 films grown on Nb-doped SrTiO3 (001) substrates using a hybrid molecular beam epitaxy approach. Metal-insulator-metal capacitors were fabricated to obtain frequency- and temperature-dependent dielectric constant and loss. Irrespective of film thickness and cation stoichiometry, the dielectric constant obtained from Ba1−xSn1−yO3 films remained largely unchanged at 15-17 and was independent of frequency and temperature. A loss tangent of ∼1 × 10−3 at 1 kHz < f < 100 kHz was obtained for stoichiometric films, which increased significantly with non-stoichiometry. Using density functional theory calculations, these results are discussed in the context of point defect complexes that can form during film synthesis. 
    more » « less
  5. Highly oriented Pb(Zr0.53Ti0.47)0.90Sc0.10O3 (PZTS) thin films were deposited on La0.67Sr0.33MnO3 (LSMO) buffer layer coated on MgO (100) substrates by following two subsequent laser ablation processes in oxygen atmosphere employing pulse laser deposition technique. The PZTS films were found to grow in tetragonal phase with orientation along (100) plane as inferred from x-ray diffractometry analysis. The structural sensitive symmetric E (LO2) Raman band softened at elevated temperature along with its intensity continuously decreased until it disappeared in the cubic phase above 350 K. The existence of broad Raman bands at high temperature (>350 K) is attributed to the symmetry forbidden Raman scattering in relaxor cubic phase due to symmetry breaking in nano length scale. The temperature dependent dielectric measurements were performed on metal-ferroelectric-metal capacitors in the frequencies range of 102–106 Hz was observed to be diffused over a wide range of temperature 300–650 K and exhibits high dielectric constant ~5700 at room temperature. An excellent high energy storage density (Ure) ~54 J/cm3 with efficiency ~70% was estimated at applied voltage 1.82 MV/cm. High DC breakdown strength, larger dielectric constant and high restored energy density values of our PZTS thin films indicate its usage in high energy storage applications. 
    more » « less