Abstract Accurate knowledge of the phase transitions and thermoelastic properties of candidate iron alloys, such as Fe‐Si alloys, is essential for understanding the nature and dynamics of planetary cores. The phase diagrams of some Fe‐Si alloys between 1 atm and 16 GPa have been back‐extrapolated from higher pressures, but the resulting phase diagram of Fe83.6Si16.4(9 wt.% Si) is inconsistent with temperature‐induced changes in its electrical resistivity between 6 and 8 GPa. This study reports in situ synchrotron X‐ray diffraction (XRD) measurements on pre‐melted and powder Fe83.6Si16.4samples from ambient conditions to 60 GPa and 900 K using an externally heated diamond‐anvil cell. Upon compression at 300 K, thebccphase persisted up to ∼38 GPa. Thehcpphase appeared near 8 GPa in the pre‐melted sample, and near 17 GPa in the powder sample. The appearance of thehcpphase in the pre‐melted sample reconciles the reported changes in electrical resistivity of a similar sample, thus resolving the low‐pressure region of the phase diagram. The resulting high‐temperature Birch‐Murnaghan equation of state (EoS) and thermal EoS based on the Mie‐Gruneisen‐Debye model of thebccandhcpstructures are consistent with, and complement the literature data at higher pressures. The calculated densities based on the thermal EoS of Fe‐9wt.%Si indicate that bothbccandhcpphases agree with the reported core density estimates for the Moon and Mercury.
more »
« less
Hydrogen and Silicon Effects on Hexagonal Close Packed Fe Alloys at High Pressures: Implications for the Composition of Earth's Inner Core
Abstract Hexagonal close‐packed (hcp) structured Fe‐Ni alloy is believed to be the dominant phase in the Earth's inner core. This phase is expected to contain 4%–5% light elements, such as Si and H. While the effects of individual light element candidates on the equation of state (EoS) of the hcp Fe metal have been studied, their combined effects remain largely unexplored. In this study, we report the equations of state for two hcp‐structured Fe‐Si‐H alloys, namely Fe0.83Si0.17H0.07and Fe0.83Si0.17H0.46, using synchrotron X‐ray diffraction measurements up to 125 GPa at 300 K. These alloys were synthesized by cold compression of Fe‐9wt%Si in either pure H2or Ar‐H2mixture medium in diamond‐anvil cells. The volume increase caused by a H atom in hcp Fe‐Si‐H alloys is approximately eight times greater than that by a Si atom. We used the improved data set to develop a composition‐dependent EoS that covers a wide range of compositions. Our calculated density and bulk sound velocity of hcp Fe‐Si‐H alloys suggest a large trade‐off between Si and H contents in fitting the seismic properties of the inner core. Combining our new EoS with geophysical and geochemical constraints, we propose 1.6–3 wt% Si and 0.15–0.6 wt% H in the Earth's inner core.
more »
« less
- Award ID(s):
- 2108129
- PAR ID:
- 10559779
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 128
- Issue:
- 4
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Understanding the effect of carbon on the density of hcp (hexagonal-close-packed) Fe-C alloys is essential for modeling the carbon content in the Earth’s inner core. Previous studies have focused on the equations of state of iron carbides that may not be applicable to the solid inner core that may incorporate carbon as dissolved carbon in metallic iron. Carbon substitution in hcp-Fe and its effect on the density have never been experimentally studied. We investigated the compression behavior of Fe-C alloys with 0.31 and 1.37 wt % carbon, along with pure iron as a reference, by in-situ X-ray diffraction measurements up to 135 GPa for pure Fe, and 87 GPa for Fe-0.31C and 109 GPa for Fe-1.37C. The results show that the incorporation of carbon in hcp-Fe leads to the expansion of the lattice, contrary to the known effect in body-centered cubic (bcc)-Fe, suggesting a change in the substitution mechanism or local environment. The data on axial compressibility suggest that increasing carbon content could enhance seismic anisotropy in the Earth’s inner core. The new thermoelastic parameters allow us to develop a thermoelastic model to estimate the carbon content in the inner core when carbon is incorporated as dissolved carbon hcp-Fe. The required carbon contents to explain the density deficit of Earth’s inner core are 1.30 and 0.43 wt % at inner core boundary temperatures of 5000 K and 7000 K, respectively.more » « less
-
SUMMARY The seismic anisotropy of the Earth's solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111> slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc + hcp state up to 40 GPa. The hcp phase forms first with a distinct {11$$\bar{2}$$0} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11$$\bar{2}$$0> slip, combined with {10$$\bar{1}$$2}<$$\bar{1}$$011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions.more » « less
-
Abstract Carbon and nitrogen are considered as candidate light elements present in planetary cores. However, there is limited understanding regarding the structure and physical properties of Fe‐C‐N alloys under extreme conditions. Here diamond anvil cell experiments were conducted, revealing the stability of hexagonal‐structured Fe7(N0.75C0.25)3up to 120 GPa and 2100 K, without undergoing any structural transformation or dissociation. Notably, the thermal expansion coefficient and Grüneisen parameter of the alloy exhibit a collapse at 55–70 GPa. First‐principles calculations suggest that such anomaly is associated with the spin transition of iron within Fe7(N0.75C0.25)3. Our modeling indicates that the presence of ∼1.0 wt% carbon and nitrogen in liquid iron contributes to 9–12% of the density deficit of the Earth's outer core. The thermoelastic anomaly of the Fe‐C‐N alloy across the spin transition is likely to affect the density and seismic velocity profiles of (C,N)‐rich planetary cores, thereby influencing the dynamics of such cores.more » « less
-
Abstract An oxygen‐resistant refractory high‐entropy alloy is synthesized in microlattice or bulk form by 3D ink‐extrusion printing, interdiffusion, and silicide coating. Additive manufacturing of equiatomic HfNbTaTiZr is implemented by extruding inks containing hydride powders, de‐binding under H2, and sintering under vacuum. The sequential decomposition of hydride powders (HfH2+NbH+TaH0.5+TiH2+ZrH2) is followed by in situ X‐ray diffraction. Upon sintering at 1400 °C for 18 h, a nearly fully densified, equiatomic HfNbTaTiZr alloy is synthesized; on slow cooling, both α‐HCP and β‐BCC phases are formed, but on quenching, a metastable single β‐BCC phase is obtained. Printed and sintered HfNbTaTiZr alloys with ≈1 wt.% O shows excellent mechanical properties at high temperatures. Oxidation resistance is achieved by silicide coating via pack cementation. A small‐size lattice‐core sandwich is fabricated and tested with high‐temperature flames to demonstrate the versatility of this sequential approach (printing, sintering, and siliconizing) for high‐temperature, high‐stress applications of refractory high‐entropy alloys.more » « less
An official website of the United States government

