Abstract This paper proposes algorithms for estimating parameters in Earth System Models (ESMs), specifically focusing on simulations that have not yet achieved statistical equilibrium and display climate drift. The basic idea is to treat ESM time series as outputs of an autoregressive process, with parameters that depend on those of the ESM. The maximum likelihood estimate of the parameters and the associated uncertainties are derived. This method requires solving a nonlinear system of equations and often results in unsatisfactory parameter estimates, especially in short simulations. This paper explores a strategy for overcoming this limitation by dividing the estimation process into two linear phases. This algorithm is applied to estimate parameters in the convection scheme of the Community Earth System Model version 2 (CESM2). The modified algorithm can produce accurate estimates from perturbation runs as short as 2 years, including those exhibiting climate drift. Despite accounting for climate drift, the accuracy of these estimates is comparable to that of algorithms that do not. While these initial results are not optimal, the autoregressive approach presented here remains a promising strategy for model tuning since it explicitly accounts for climate drift in a rigorous statistical framework. The current performance issues are believed to be technical in nature and potentially solvable through further investigation.
more »
« less
Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems With Parameter Drift
ABSTRACT We present a novel method for generating sequential parameter estimates and quantifying epistemic uncertainty in dynamical systems within a data‐consistent (DC) framework. The DC framework differs from traditional Bayesian approaches due to the incorporation of the push‐forward of an initial density, which performs selective regularization in parameter directions not informed by the data in the resulting updated density. This extends a previous study that included the linear Gaussian theory within the DC framework and introduced the maximal updated density (MUD) estimate as an alternative to both least squares and maximum a posterior (MAP) estimates. In this work, we introduce algorithms for operational settings of MUD estimation in real‐ or near‐real time where spatio‐temporal datasets arrive in packets to provide updated estimates of parameters and identify potential parameter drift. Computational diagnostics within the DC framework prove critical for evaluating (1) the quality of the DC update and MUD estimate and (2) the detection of parameter value drift. The algorithms are applied to estimate (1) wind drag parameters in a high‐fidelity storm surge model, (2) thermal diffusivity field for a heat conductivity problem, and (3) changing infection and incubation rates of an epidemiological model.
more »
« less
- Award ID(s):
- 2208460
- PAR ID:
- 10559813
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- ISSN:
- 0029-5981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Model parameter updating can enhance the use of nonlinear structural response simulation to guide decision-making in the post-earthquake environment. Since most structures in high seismic regions are not instrumented with sensors, the response history during ground shaking is usually not available after an earthquake. Nevertheless, technologies such as Light Detection and Ranging (LiDAR) and drone-mounted imaging devices have increased the feasibility of measuring residual deformations after the shaking has subsided. It is within this context that a framework for performing nonlinear structural model parameter updating based only on residual drift measurements is proposed. The considered setting is one where a structure is subjected to a sequence of ground motions (without repairs), whereby after each event, the structural model parameters are updated using a Bayesian formulation and the measured residual drift. The methodology is demonstrated by using experimental data from a reinforced concrete bridge pier subjected to six back-to-back ground motions with significant residual drifts recorded after the third, fourth and fifth records in the sequence. The results showed that the updating procedure is able to incrementally (after each record) improve the accuracy of both the concrete and steel model parameters which also enhanced the estimates of the simulated peak and residual drifts.more » « less
-
Model parameter updating can enhance the use of nonlinear structural response simulation to guide decision-making in the post-earthquake environment. Since most structures in high seismic regions are not instrumented with sensors, the response history during ground shaking is usually not available after an earthquake. Nevertheless, technologies such as Light Detection and Ranging (LiDAR) and drone-mounted imaging devices have increased the feasibility of measuring residual deformations after the shaking has subsided. It is within this context that a framework for performing nonlinear structural model parameter updating based only on residual drift measurements is proposed. The considered setting is one where a structure is subjected to a sequence of ground motions (without repairs), whereby after each event, the structural model parameters are updated using a Bayesian formulation and the measured residual drift. The methodology is demonstrated by using experimental data from a reinforced concrete bridge pier subjected to six back-to-back ground motions with significant residual drifts recorded after the third, fourth and fifth records in the sequence. The results showed that the updating procedure is able to incrementally (after each record) improve the accuracy of both the concrete and steel model parameters which also enhanced the estimates of the simulated peak and residual drifts.more » « less
-
Abstract. High-resolution, spatially distributed process-based (PB) simulators are widely employed in the study of complex catchment processes and their responses to a changing climate. However, calibrating these PB simulators using observed data remains a significant challenge due to several persistent issues, including the following: (1) intractability stemming from the computational demands and complex responses of simulators, which renders infeasible calculation of the conditional probability of parameters and data, and (2) uncertainty stemming from the choice of simplified representations of complex natural hydrologic processes. Here, we demonstrate how simulation-based inference (SBI) can help address both of these challenges with respect to parameter estimation. SBI uses a learned mapping between the parameter space and observed data to estimate parameters for the generation of calibrated simulations. To demonstrate the potential of SBI in hydrologic modeling, we conduct a set of synthetic experiments to infer two common physical parameters – Manning's coefficient and hydraulic conductivity – using a representation of a snowmelt-dominated catchment in Colorado, USA. We introduce novel deep-learning (DL) components to the SBI approach, including an “emulator” as a surrogate for the PB simulator to rapidly explore parameter responses. We also employ a density-based neural network to represent the joint probability of parameters and data without strong assumptions about its functional form. While addressing intractability, we also show that, if the simulator does not represent the system under study well enough, SBI can yield unreliable parameter estimates. Approaches to adopting the SBI framework for cases in which multiple simulator(s) may be adequate are introduced using a performance-weighting approach. The synthetic experiments presented here test the performance of SBI, using the relationship between the surrogate and PB simulators as a proxy for the real case.more » « less
-
Abstract This paper addresses the parameter estimation problem for lithium-ion battery pack models comprising cells in series. This valuable information can be exploited in fault diagnostics to estimate the number of cells that are exhibiting abnormal behaviour, e.g. large resistances or small capacities. In particular, we use a Bayesian approach to estimate the parameters of a two-cell arrangement modelled using equivalent circuits. Although our modeling framework has been extensively reported in the literature, its structural identifiability properties have not been reported yet to the best of the authors’ knowledge. Moreover, most contributions in the literature tackle the estimation problem through point-wise estimates assuming Gaussian noise using e.g. least-squares methods (maximum likelihood estimation) or Kalman filters (maximum a posteriori estimation). In contrast, we apply methods that are suitable for nonlinear and non-Gaussian estimation problems and estimate the full posterior probability distribution of the parameters. We study how the model structure, available measurements and prior knowledge of the model parameters impact the underlying posterior probability distribution that is recovered for the parameters. For two cells in series, a bimodal distribution is obtained whose modes are centered around the real values of the parameters for each cell. Therefore, bounds on the model parameters for a battery pack can be derived.more » « less
An official website of the United States government
