We demonstrate a simple and cost-efficient scanning confocal microscope setup for use in advanced instructional physics laboratories. The setup is constructed from readily available commercial products, and the implementation of a 3D-printed flexure stage allows for further cost reduction and pedagogical opportunity. Experiments exploring the thickness of a microscope slide and the surface of solid objects with height variation are presented as foundational components of undergraduate laboratory projects and demonstrate the capabilities of a confocal microscope. This system allows observation of key components of a confocal microscope, including depth perception and data acquisition via transverse scanning, making it an excellent pedagogical resource.
more »
« less
The Visible Microscope
The Visible Microscope is inspired by the OpenFlexure microscope. The Open Flexure microscope is a laboratory-grade microscope constructed using 3D printed parts and a single-board computer that is widely used in research laboratories internationally (Sharkey, Foo, Kabla, Baumberg & Bowman, 2016). The Visible Microscope is an adapted version of the Open Flexure microscope designed for K-12 schools.
more »
« less
- Award ID(s):
- 2229627
- PAR ID:
- 10559900
- Publisher / Repository:
- National Technology Leadership Society
- Date Published:
- Format(s):
- Medium: X
- Location:
- Charlottesville, Virginia
- Institution:
- University of Virginia School of Education & Human Development
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ice shelves regulate ice sheet dynamics, with their stability influenced by horizontal flow and vertical flexure. MacAyeal and others (2021) developed the theoretical foundation for a coupled flow-flexure model (the “M21 model”), combining the Shallow Shelf Approximation with thin-beam flexure, providing a computationally efficient tool for studying phenomena like ice shelf rumpling and lake drainage. However, the M21 model relies on proprietary software, is unstable under compressive flow conditions, and does not incorporate fracture processes critical for capturing ice-shelf damage evolution. We present an open-source version of the M21 model addressing these limitations. Using the free Python librariesFiredrakeandicepack, we introduce a plastic failure mechanism, effectively limiting bending stresses and thereby stabilizing the model. This enhancement expands the viscous M21 model into a viscoplastic flow-flexure-fracture (3F) framework. We validate the 3F model through test cases replicating key ice shelf phenomena, including marginal rumpling and periodic surface meltwater drainage. By offering this tool as open-source software, we aim to enable broader adoption, with the ultimate aim of representing surface meltwater induced flow-flexure-fracture processes in large-scale ice sheet models.more » « less
-
Abstract The Hawaiian Ridge has long been a focus site for studying lithospheric flexure due to intraplate volcano loading, but crucial load and flexure details remain unclear. We address this problem using wide‐angle seismic refraction and reflection data acquired along a ∼535‐km‐long profile that intersects the ridge between the islands of Maui and Hawai'i and crosses 80–95 Myr‐old lithosphere. A tomographic image constructed using travel time data of several seismic phases reveals broad flexure of Pacific oceanic crust extending up to ∼200–250 km either side of the Hawaiian Ridge, and vertically up to ∼6–7 km. TheP‐wave velocity structure, verified by gravity modeling, reveals that the west flank of Hawaii is comprised of extrusive lavas overlain by volcanoclastic sediments and a carbonate platform. In contrast, the Hāna Ridge, southeast of Maui, contains a high‐velocity core consistent with mafic or ultramafic intrusive rocks. Magmatic underplating along the seismic line is not evident. Reflectors at the top and bottom of the pre‐existing oceanic crust suggest a ∼4.5–6 km crustal thickness. Simple three‐dimensional flexure modeling with an elastic plate thickness,Te, of 26.7 km shows that the depths to the reflectors beneath the western flank of Hawai'i can be explained by volcano loading in which Maui and the older islands in the ridge contribute ∼43% to the flexure and the island of Hawai'i ∼51%. Previous studies, however, revealed a higherTebeneath the eastern flank of Hawai'i suggesting that isostatic compensation may not yet be complete at the youngest end of the ridge.more » « less
-
The development of new characterization methods has resulted in innovative studies of the properties of two-dimensional (2D) materials. Observations of nanoscale heterogeneity with scanning probe microscopy methods have led to efforts to further understand these systems and observe new local phenomena by coupling light-based measurement methods into the tip-sample junction. Bringing optical spectroscopy into the near-field in ultrahigh vacuum at cryogenic temperatures has led to highly unique studies of molecules and materials, yielding new insight into otherwise unobservable properties nearing the atomic scale. Here, we discuss studies of 2D materials at the subnanoscale where the measurement method relies on the detection of visible light scattered or emitted from the scanning tunneling microscope (STM). We focus on tip-enhanced Raman spectroscopy, a subset of scattering-type scanning near-field optical microscopy, where incident light is confined and enhanced by a plasmonic STM tip. We also mention scanning tunneling microscope induced luminescence, where the STM tip is used as a highly local light source. The measurement of light-matter interactions within the atomic STM cavity is expected to continue to provide a useful platform to study new materials.more » « less
-
Abstract Flexure occurs on intermediate geologic timescales (∼1 Myr) due to volcanic‐island building at the Island of Hawaii, and the deformational response of the lithosphere is simultaneously elastic, plastic, and ductile. At shallow depths and low temperatures, elastic deformation transitions to frictional failure on faults where stresses exceed a threshold value, and this complex rheology controls the rate of deformation manifested by earthquakes. In this study, we estimate the seismic strain rate based on earthquakes recorded between 1960 and 2019 at Hawaii, and the estimated strain rate with 10−18–10−15s−1in magnitude exhibits a local minimum or neutral bending plane at 15 km depth within the lithosphere. In comparison, flexure and internal deformation of the lithosphere are modeled in 3D viscoelastic loading models where deformation at shallow depths is accommodated by frictional sliding on faults and limited by the frictional coefficient (μf), and at larger depths by low‐temperature plasticity and high‐temperature creep. Observations of flexure and the seismic strain rate are best‐reproduced by models withμf = 0.3 ± 0.1 and modified laboratory‐derived low‐temperature plasticity. Results also suggest strong lateral variations in the frictional strength of faults beneath Hawaii. Our models predict a radial pattern of compressive stress axes relative to central Hawaii consistent with observations of earthquake pressure (P) axes. We demonstrate that the dip angle of this radial axis is essential to discerning a change in the curvature of flexure, and therefore has implications for constraining lateral variations in lithospheric strength.more » « less
An official website of the United States government
