Abstract Global Navigation Satellite System (GNSS) observations and ground-based timelapse photography obtained over the record-high 2019/2020 melt season are combined to characterise the flexure and fracture behaviour of a previously formed doline on George VI Ice Shelf, Antarctica. The GNSS timeseries shows a downward vertical displacement of the doline centre with respect to the doline rim of ~60 cm in response to loading from a central meltwater lake. The GNSS data also show a tens-of-days episode of rapid-onset, exponentially decaying horizontal displacement, where the horizontal distance between the doline rim and its centre increases by ~70 cm. We interpret this event as the initiation and/or widening of a fracture, aided by stress perturbations associated with meltwater loading in the doline basin. Viscous flexure modelling indicates that the meltwater loading generates tensile surface stresses exceeding 75 kPa. This, together with our timelapse photos of circular fractures around the doline, suggests the first such documentation of meltwater-loading-induced ‘ring fracture’ formation on an ice shelf, equivalent to the fracture type proposed as part of the chain-reaction lake drainage process involved in the 2002 breakup of the Larsen B Ice Shelf.
more »
« less
This content will become publicly available on September 12, 2026
Ice shelf evolution combining flow, flexure, and fracture
Abstract Ice shelves regulate ice sheet dynamics, with their stability influenced by horizontal flow and vertical flexure. MacAyeal and others (2021) developed the theoretical foundation for a coupled flow-flexure model (the “M21 model”), combining the Shallow Shelf Approximation with thin-beam flexure, providing a computationally efficient tool for studying phenomena like ice shelf rumpling and lake drainage. However, the M21 model relies on proprietary software, is unstable under compressive flow conditions, and does not incorporate fracture processes critical for capturing ice-shelf damage evolution. We present an open-source version of the M21 model addressing these limitations. Using the free Python librariesFiredrakeandicepack, we introduce a plastic failure mechanism, effectively limiting bending stresses and thereby stabilizing the model. This enhancement expands the viscous M21 model into a viscoplastic flow-flexure-fracture (3F) framework. We validate the 3F model through test cases replicating key ice shelf phenomena, including marginal rumpling and periodic surface meltwater drainage. By offering this tool as open-source software, we aim to enable broader adoption, with the ultimate aim of representing surface meltwater induced flow-flexure-fracture processes in large-scale ice sheet models.
more »
« less
- PAR ID:
- 10657723
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Glaciology
- Volume:
- 71
- ISSN:
- 0022-1430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Between 1992 and 2017, the Antarctic Ice Sheet (AIS) lost ice equivalent to 7.6 ± 3.9 mm of sea level rise. AIS mass loss is mitigated by ice shelves that provide a buttress by regulating ice flow from tributary glaciers. However, ice‐shelf stability is threatened by meltwater ponding, which may initiate, or reactivate preexisting, fractures, currently poorly understood processes. Here, through ground penetrating radar (GPR) analysis over a buried lake in the grounding zone of an East Antarctic ice shelf, we present the first field observations of a lake drainage event in Antarctica via vertical fractures. Concurrent with the lake drainage event, we observe a decrease in surface elevation and an increase in Sentinel‐1 backscatter. Finally, we suggest that fractures that are initiated or reactivated by lake drainage events in a grounding zone will propagate with ice flow onto the ice shelf itself, where they may have implications for its stability.more » « less
-
Abstract Surface melting and lakes are common to Antarctic ice shelves, and their existence and drainages have been invoked as a precursor for ice shelf collapse. Here, we present satellite observations over 2014–2020 of repeated, rapid drainages of a supraglacial lake at the grounding zone of Amery Ice Shelf, East Antarctica. Post‐drainage imagery in 2018 reveals lake bottom features characteristic of rapid, vertical lake drainage. Observed lake volumes indicate drainages are not associated with a threshold meltwater volume. Instead, drainages typically coincide with periods of high daily tidal amplitude, suggesting hydrofracture is assisted by tidally forced ice flexure inherent to the ice shelf grounding zone. Combined with observations of widespread grounding zone lake drainages on Amery, these findings indicate ice shelf meltwater accumulation may be inhibited by grounding zone drainage events, thus representing a potential stabilizing mechanism despite enhanced melting common to these regions.more » « less
-
Abstract. The Greenland Ice Sheet (GrIS) is losing mass as the climate warms through both increased meltwater runoff and ice discharge at marine-terminating sectors. At the ice sheet surface, meltwater runoff forms a dynamic supraglacial hydrological system which includes stream and river networks and large supraglacial lakes (SGLs). Streams and rivers can route water into crevasses or into supraglacial lakes with crevasses underneath, both of which can then hydrofracture to the ice sheet base, providing a mechanism for the surface meltwater to access the bed. Understanding where, when, and how much meltwater is transferred to the bed is important because variability in meltwater supply to the bed can increase ice flow speeds, potentially impacting the hypsometry of the ice sheet in grounded sectors, and iceberg discharge to the ocean. Here we present a new, physically based, supraglacial hydrology model for the GrIS that is able to simulate (a) surface meltwater routing and SGL filling; (b) rapid meltwater drainage to the ice sheet bed via the hydrofracture of surface crevasses both in and outside of SGLs; (c) slow SGL drainage via overflow in supraglacial meltwater channels; and, by offline coupling with a second model, (d) the freezing and unfreezing of SGLs from autumn to spring. We call the model the Supraglacial Hydrology Evolution and Drainage (or SHED) model. We apply the model to three study regions in southwest Greenland between 2015 and 2019 (inclusive) and evaluate its performance with respect to observed supraglacial lake extents and proglacial discharge measurements. We show that the model reproduces 80 % of observed lake locations and provides good agreement with observations in terms of the temporal evolution of lake extent. Modelled moulin density values are in keeping with those previously published, and seasonal and inter-annual variability in proglacial discharge agrees well with that which is observed, though the observations lag the model by a few days since they include transit time through the subglacial system, while the model does not. Our simulations suggest that lake drainage behaviours may be more complex than traditional models suggest, with lakes in our model draining through a combination of both overflow and hydrofracture and with some lakes draining only partially and then refreezing. This suggests that, in order to simulate the evolution of Greenland's surface hydrological system with fidelity, a model that includes all of these processes needs to be used. In future work, we will couple our model to a subglacial model and an ice flow model and thus use our estimates of where, when, and how much meltwater gets to the bed to understand the consequences for ice flow.more » « less
-
Surface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of- magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 mm3 to 215 ± 90.2 mm3) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input.more » « less
An official website of the United States government
