skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracing Englacial Layers in Radargram via Semi-supervised Method: A Preliminary Result
The melting of ice sheets significantly contributes to sea level rise, highlighting the crucial need to comprehend the structure of ice for climate benefits. The stratigraphy of ice sheets revealed through ice layer radargrams gives us a window into historical depth-age correlations and accumulation rates. Harnessing this knowledge is not only crucial for interpreting both past and present ice dynamics, especially concerning the Greenland ice sheet, but also for making informed decisions to mitigate the impacts of climate change. Ice layer tracing is prevalently conducted using manual or semi-automatic approaches, requiring significant time and expertise. This study aims to address the need for efficient and precise tracing methods in a two-step process. This is achieved by utilizing an unsupervised annotation method (i.e., ARESELP) to train deep learning models, thereby reducing the need for extensive and time-consuming manual annotations. Four prominent deep learning-based segmentation techniques, namely U-Net, U-Net+VGG19, U-Net+Inception, and Attention U-Net, are benchmarked. Additionally, various thresholding methods such as binary, Otsu, and CLAHE have been explored to achieve optimal enhancement for the true label annotation images. Our preliminary experiments indicate that the combination of attention U-Net with specific processing techniques yields the best performance in terms of the binary IoU metric.  more » « less
Award ID(s):
2118285
PAR ID:
10559920
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Symposium Series
Volume:
2
Issue:
1
ISSN:
2994-4317
Page Range / eLocation ID:
85 to 88
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tidal creeks play a vital role in influencing geospatial evolution and marsh ecological communities in coastal landscapes. However, evaluating the geospatial characteristics of numerous creeks across a site and understanding their ecological relationships pose significant challenges due to the labor-intensive nature of manual delineation from imagery. Traditional methods rely on manual annotation in GIS interfaces, which is slow and tedious. This study explores the application of Attention-based Dense U-Net (ADU-Net), a deep learning image segmentation model, for automatically classifying creek pixels in high-resolution (0.5 m) orthorectified aerial imagery in coastal Georgia, USA. We observed that ADU-Net achieved an outstanding F1 score of 0.98 in identifying creek pixels, demonstrating its ability in tidal creek mapping. The study highlights the potential of deep learning models for automated tidal creek mapping, opening avenues for future investigations into the role of creeks in marshes’ response to environmental changes. 
    more » « less
  2. null (Ed.)
    Climate change is extensively affecting ice sheets resulting in accelerating mass loss in recent decades. Assessment of this reduction and its causes is required to project future ice mass loss. Annual snow accumulation is an important component of the surface mass balance of ice sheets. While in situ snow accumulation measurements are temporally and spatially limited due to their high cost, airborne radar sounders can achieve ice sheet wide coverage by capturing and tracking annual snow layers in the radar images or echograms. In this paper, we use deep learning to uniquely identify the position of each annual snow layer in the Snow Radar echograms taken across different regions over the Greenland ice sheet. We train with more than 15,000 images generated from radar echograms and estimate the thickness of each snow layer within a mean absolute error of 0.54 to 7.28 pixels, depending on dataset. A highly precise snow layer thickness can help improve weather models and, thus, support glaciological studies. Such a well-trained deep learning model can be used with ever-growing datasets to aid in the accurate assessment of snow accumulation on the dynamically changing ice sheets. 
    more » « less
  3. Due to the growing volume of remote sensing data and the low latency required for safe marine navigation, machine learning (ML) algorithms are being developed to accelerate sea ice chart generation, currently a manual interpretation task. However, the low signal-to-noise ratio of the freely available Sentinel-1 Synthetic Aperture Radar (SAR) imagery, the ambiguity of backscatter signals for ice types, and the scarcity of open-source high-resolution labelled data makes automating sea ice mapping challenging. We use Extreme Earth version 2, a high-resolution benchmark dataset generated for ML training and evaluation, to investigate the effectiveness of ML for automated sea ice mapping. Our customized pipeline combines ResNets and Atrous Spatial Pyramid Pooling for SAR image segmentation. We investigate the performance of our model for: i) binary classification of sea ice and open water in a segmentation framework; and ii) a multiclass segmentation of five sea ice types. For binary ice-water classification, models trained with our largest training set have weighted F1 scores all greater than 0.95 for January and July test scenes. Specifically, the median weighted F1 score was 0.98, indicating high performance for both months. By comparison, a competitive baseline U-Net has a weighted average F1 score of ranging from 0.92 to 0.94 (median 0.93) for July, and 0.97 to 0.98 (median 0.97) for January. Multiclass ice type classification is more challenging, and even though our models achieve 2% improvement in weighted F1 average compared to the baseline U-Net, test weighted F1 is generally between 0.6 and 0.80. Our approach can efficiently segment full SAR scenes in one run, is faster than the baseline U-Net, retains spatial resolution and dimension, and is more robust against noise compared to approaches that rely on patch classification. 
    more » « less
  4. This paper presents an innovative solution to the challenge of part obsolescence in microelectronics, focusing on the semantic segmentation of PCB X-ray images using deep learning. Addressing the scarcity of annotated datasets, we developed a novel method to synthesize X-ray images of PCBs, employing virtual images with predefined geometries and inherent labeling to eliminate the need for manual annotation. Our approach involves creating realistic synthetic images that mimic actual X-ray projections, enhanced by incorporating noise profiles derived from real X-ray images. Two deep learning networks, based on the U-Net architecture with a VGG-16 backbone, were trained exclusively on these synthetic datasets to segment PCB junctions and traces. The results demonstrate the effectiveness of this synthetic data-driven approach, with the networks achieving high Jaccard indices on real PCB X-ray images. This study not only offers a scalable and cost-effective alternative for dataset generation in microelectronics but also highlights the potential of synthetic data in training models for complex image analysis tasks, suggesting broad applications in various domains where data scarcity is a concern. 
    more » « less
  5. This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance. 
    more » « less