Mass data generation occurring in the Internet- of-Things (IoT) requires processing to extract meaningful in- formation. Deep learning is commonly used to perform such processing. However, due to the sensitive nature of these data, it is important to consider data privacy. As such, federated learning (FL) has been proposed to address this issue. FL pushes training to the client devices and tasks a central server with aggregating collected model weights to update a global model. However, the transmission of these model weights can be costly, gradually. The trade-off between communicating model weights for aggregation and the loss provided by the global model remains an open problem. In this work, we cast this trade-off problem of client selection in FL as an optimization problem. We then design a Distributed Client Selection (DCS) algorithm that allows client devices to decide to participate in aggregation in hopes of minimizing overall communication cost — while maintaining low loss. We evaluate the performance of our proposed client selection algorithm against standard FL and a state-of-the-art client selection algorithm, called Power-of-Choice (PoC), using CIFAR-10, FMNIST, and MNIST datasets. Our experimental results confirm that our DCS algorithm is able to closely match the loss provided by the standard FL and PoC, while on average reducing the overall communication cost by nearly 32.67% and 44.71% in comparison to standard FL and PoC, respectively.
more »
« less
Demystifying Local & Global Fairness Trade-offs in Federated Learning Using Partial Information Decomposition
This work presents an information-theoretic perspective to group fairness trade-offs in federated learning (FL) with respect to sensitive attributes, such as gender, race, etc. Existing works often focus on either global fairness (overall disparity of the model across all clients) or local fairness (disparity of the model at each client), without always considering their trade-offs. There is a lack of understanding regarding the interplay between global and local fairness in FL, particularly under data heterogeneity, and if and when one implies the other. To address this gap, we leverage a body of work in information theory called partial information decomposition (PID), which first identifies three sources of unfairness in FL, namely, Unique Disparity, Redundant Disparity, and Masked Disparity. We demonstrate how these three disparities contribute to global and local fairness using canonical examples. This decomposition helps us derive fundamental limits on the trade-off between global and local fairness, highlighting where they agree or disagree. We introduce the Accuracy and Global-Local Fairness Optimality Problem (AGLFOP), a convex optimization that defines the theoretical limits of accuracy and fairness trade-offs, identifying the best possible performance any FL strategy can attain given a dataset and client distribution. We also present experimental results on synthetic datasets and the ADULT dataset to support our theoretical findings.
more »
« less
- Award ID(s):
- 2340006
- PAR ID:
- 10560032
- Publisher / Repository:
- International Conference on Learning Representations (ICLR)
- Date Published:
- ISBN:
- 9781713898658
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Federated learning (FL) is a collaborative machine-learning (ML) framework particularly suited for ML models requiring numerous training samples, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Random Forest, in the context of various applications, e.g., next-word prediction and eHealth. FL involves various clients participating in the training process by uploading their local models to an FL server in each global iteration. The server aggregates these models to update a global model. The traditional FL process may encounter bottlenecks, known as the straggler problem, where slower clients delay the overall training time. This paper introduces the Latency-awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing (LESSON) method. LESSON allows clients to participate at different frequencies: faster clients contribute more frequently, therefore mitigating the straggler problem and expediting convergence. Moreover, LESSON provides a tunable trade-off between model accuracy and convergence rate by setting varying deadlines. Simulation results show that LESSON outperforms two baseline methods, namely FedAvg and FedCS, in terms of convergence speed and maintains higher model accuracy compared to FedCS.more » « less
-
In Federated Learning (FL), clients independently train local models and share them with a central aggregator to build a global model. Impermissibility to access clients' data and collaborative training make FL appealing for applications with data-privacy concerns, such as medical imaging. However, these FL characteristics pose unprecedented challenges for debugging. When a global model's performance deteriorates, identifying the responsible rounds and clients is a major pain point. Developers resort to trial-and-error debugging with subsets of clients, hoping to increase the global model's accuracy or let future FL rounds retune the model, which are time-consuming and costly. We design a systematic fault localization framework, Fedde-bug,that advances the FL debugging on two novel fronts. First, Feddebug enables interactive debugging of realtime collaborative training in FL by leveraging record and replay techniques to construct a simulation that mirrors live FL. Feddebug'sbreakpoint can help inspect an FL state (round, client, and global model) and move between rounds and clients' models seam-lessly, enabling a fine-grained step-by-step inspection. Second, Feddebug automatically identifies the client(s) responsible for lowering the global model's performance without any testing data and labels-both are essential for existing debugging techniques. Feddebug's strengths come from adapting differential testing in conjunction with neuron activations to determine the client(s) deviating from normal behavior. Feddebug achieves 100% accuracy in finding a single faulty client and 90.3% accuracy in finding multiple faulty clients. Feddebug's interactive de-bugging incurs 1.2% overhead during training, while it localizes a faulty client in only 2.1% of a round's training time. With FedDebug,we bring effective debugging practices to federated learning, improving the quality and productivity of FL application developers.more » « less
-
Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data. Although local data is not exposed directly, privacy concerns nonetheless exist as clients' sensitive information can be inferred from intermediate computations. Moreover, such information leakage accumulates substantially over time as the same data is repeatedly used during the iterative learning process. As a result, it can be particularly difficult to balance the privacy-accuracy trade-off when designing privacy-preserving FL algorithms. This paper introduces Upcycled-FL, a simple yet effective strategy that applies first-order approximation at every even round of model update. Under this strategy, half of the FL updates incur no information leakage and require much less computational and transmission costs. We first conduct the theoretical analysis on the convergence (rate) of Upcycled-FL and then apply two perturbation mechanisms to preserve privacy. Extensive experiments on both synthetic and real-world data show that the Upcycled-FL strategy can be adapted to many existing FL frameworks and consistently improve the privacy-accuracy trade-offmore » « less
-
Li, R; Chowdhury, K (Ed.)Federated Learning (FL) enables model training across decentralized clients while preserving data privacy. However, bandwidth constraints limit the volume of information exchanged, making communication efficiency a critical challenge. In addition, non- IID data distributions require fairness-aware mechanisms to prevent performance degradation for certain clients. Existing sparsification techniques often apply fixed compression ratios uniformly, ignoring variations in client importance and bandwidth. We propose FedBand, a dynamic bandwidth allocation framework that prioritizes clients based on their contribution to the global model. Unlike conventional approaches, FedBand does not enforce uniform client participation in every communication round. Instead, it allocates more bandwidth to clients whose local updates deviate significantly from the global model, enabling them to transmit a greater number of parameters. Clients with less impactful updates contribute proportionally less or may defer transmission, reducing unnecessary overhead while maintaining generalizability. By optimizing the trade-off between communication efficiency and learning performance, FedBand substantially reduces transmission costs while preserving model accuracy. Experiments on non-IID CIFAR-10 and UTMobileNet2021 datasets, demonstrate that FedBand achieves up to 99.81% bandwidth savings per round while maintaining accuracies close to that of an unsparsified model (80% on CIFAR- 10, 95% on UTMobileNet), despite transmitting less than 1% of the model parameters in each round. Moreover, FedBand accelerates convergence by 37.4%, further improving learning efficiency under bandwidth constraints. Mininet emulations further show a 42.6% reduction in communication costs and a 65.57% acceleration in convergence compared to baseline methods, validating its real-world efficiency. These results demonstrate that adaptive bandwidth allocation can significantly enhance the scalability and communication efficiency of federated learning, making it more viable for real- world, bandwidth-constrained networking environments.more » « less
An official website of the United States government

