skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microscopic Discontinuities Disrupting Hydrodynamic and Continuum Traffic Flow Models
Hydrodynamic and continuum traffic flow models usually require that traffic states are stationary for the model assumptions to hold. The reproducibility of a concave fundamental diagram, FD, is typically assumed to also demonstrate that the underlying states are sufficiently near stationary. This paper uses loop detector data from five locations to empirically demonstrate that the microscopic traffic dynamics giving rise to a concave FD can also invalidate the stationarity assumptions required by the traffic flow models. Specifically, this work develops the exclusionary vehicle aggregation, EVA, method to evaluate conditions underlying conventional fixed time average state measurements. The shape of the FD is shown to be highly correlated with the standard deviation of headways, stdev(h), within the underlying samples: low stdev(h) corresponding to triangular FD and high stdev(h) to concave FD. Furthermore, high stdev(h) is shown to correspond to the presence of large voids within the given sample. These voids are inherently non-stationary because different regions of the sample are perceptively distinct. With these new insights in mind, a review of the earliest FD literature reveals evidence supporting the loop detector-based findings. Collectively, the loop detector and historical FD results span over 75 years of empirical traffic data. Meanwhile, a driver behind a large void can act independent of their leader. From the kinematic wave, KW, perspective, a void creates an ill posed problem: if a driver acts independent of their leader there are no KW from the boundaries that reach the driver during their independence, and thus, there is no way to predict how the driver should act. Generally, this type of ill posed problem is avoided in theoretical developments by requiring stationary conditions for the given model, but as this paper shows, real traffic does not necessarily provide stationary conditions. Although the voids are large enough to disrupt stationarity, their duration remains far below the resolution of fixed time averaging to be perceived. As a result, whenever a traffic flow model depends on stationarity and the shape of the FD, it is imperative to check the data to make sure they support the assumptions placed on the FD, e.g., via the EVA method developed herein. Finally, the empirical results in this paper should facilitate the development of macroscopic models that better capture the dynamics of real traffic.  more » « less
Award ID(s):
2023857
PAR ID:
10560102
Author(s) / Creator(s):
Publisher / Repository:
https://limos.engin.umich.edu/isttt25/events/list/?tribe-bar-date=2024-07-14
Date Published:
Subject(s) / Keyword(s):
Fundamental diagram Vehicle detection traffic flow theory Hydrodynamic traffic flow Continuum traffic flow model
Format(s):
Medium: X
Location:
https://limos.engin.umich.edu/isttt25/events/list/?tribe-bar-date=2024-07-14
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores short duration disturbances in the traffic stream that are large enough to impact the traffic dynamics and disrupt stationarity when establishing the fundamental diagram, FD, but small enough that they are below the resolution of conventional vehicle detector data and cannot be seen using conventional methods. This empirical research develops the Exclusionary Vehicle Aggregation method (EVA) to extract high fidelity time series data from conventional loop detectors and then extends the method to measure the standard deviation of headways in a given fixed time sample, stdevh. Using loop detector data spanning 18 years and five sites, all of the sites show that samples with low stdevh tend towards a triangular FD while samples with high stdevh tend towards a concave FD that falls inside the triangular FD. The stdevh is also shown to be strongly correlated with the duration of the longest headway within the sample. The presence of a long headway means the state is perceptively different over the sample and thus, the measurement is non-stationary. A review of the earliest FD literature by Greenshields finds strong supporting evidence for these trends. Collectively, the loop detector and historical FD results span over 75 years of empirical traffic data. Based on the EVA analysis, this work offers the following insights: the shape of equilibrium FD appears to be triangular and that conventional detector data mask critical features needed by hydrodynamic traffic flow models, HdTFM. Because the driver behind a long headway can act independent of their leader, the long headways can correspond to unobserved boundary conditions that generate kinematic waves. If these boundaries were detected many HdTFM could accommodate them, especially multi-class models. But the stochastic nature of the long headways also challenges the predictive abilities of deterministic HdTFM. Perhaps the largest of these challenges is driver agency- the driver behind a long headway can maintain it, resulting in signals propagating downstream or they can close the gap, resulting in signals propagating upstream. Meanwhile, this work provides a test for stationary conditions to help ensure an empirical FD supports the assumptions placed upon it. 
    more » « less
  2. This paper undertakes a detailed empirical study of traffic dynamics on a freeway. The results show the traffic dynamics that systematically determine the shape of the fundamental diagram, FD, can also violate the stationarity assumptions of both shockwave analysis and Lighthill, Whitham and Richard's models, thereby inhibiting the applicability of these classical macroscopic traffic flow theories. The outcome is challenging because there is no way to identify the problem using only the macroscopic detector data. The research examines conditions local to vehicle detector stations to establish the FD while the single vehicle passage method is used to analyze the composition of vehicles underlying the aggregate samples. Then, traffic states are correlated between successive stations to measure the actual signal velocities and show they are inconsistent with the classical theories. This analysis also revealed that conditions in one lane can induce signals in another lane. Rather than exhibiting a single signal passing a given point in time and space, the induced and intrinsic signals are superimposed on one another in the given lane. We suspect the subtle dynamics revealed in this research have gone unnoticed because they are far below the resolution of conventional traffic monitoring. The findings could have implications to other traffic flow models that rely on the FD, so care should be taken to assess if a given model is potentially sensitive to the non-stationary dynamics presented herein. The results have a direct impact on practice. Traffic flow theory is a critical input to many aspects of surface transportation, e.g., traffic management, traffic control, network design, vehicle routing, traveler information, and transportation planning all depend on models or simulation software that are based upon traffic flow theory. If the underlying traffic flow theory is flawed it puts the higher level applications at risk. So, the findings in this paper should lead to caution in accepting the predictions from traffic flow models and simulation software when the traffic exhibits a concave FD. 
    more » « less
  3. Abstract This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18, were investigated under varying traverse speeds. The choice of aluminum alloys enables the investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are as follows: (1) the predicted stir zone and void morphology are in good agreement with the experimental observations, (2) the temperature and plastic strain rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) the material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this study provide a framework for understanding material flow under different process conditions in aluminum alloys and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated. 
    more » « less
  4. Abstract Sub-surface voids and material heterogeneities resulting from the friction stir welding (FSW) process often necessitate post-weld inspection to ensure the quality of weld obtained from this solid-state welding process. In this context, in-process void detection techniques can potentially help in optimizing the process conditions and thereby reduce expensive and time-consuming post-process inspection of welds. Current in-process void detection techniques rely on approaches that try to directly correlate the part-scale welding quality to void formation, without a fundamental understanding of the underlying mechanics and materials physics that modulate void evolution. In this work, we demonstrate an effective in-process numerical technique that uses process force signals to detect volumetric void formation and connect the variations in the force signals to interactions between the tool probe and the underlying material voids. Our approach relies on a high-fidelity finite element analysis simulation of the FSW process and on correlation of numerically obtained process force signals with the corresponding void structures. This correlation is obtained in the phase-space relating in-plane reaction forces on the tool to the tool rotation angle. We focus on the interactions of the tool geometry and tool motion with the surrounding material undergoing plastic deformation and deduce novel insights into various correlations of tool motion and void formation. Through this approach, we can identify tool-related process conditions that can be optimized to minimize void formation and demonstrate a potential in situ force-based void monitoring method that links to the underlying plastic flow and void structures during the FSW process. 
    more » « less
  5. Micro-voids within the bead microstructure of additively manufactured short carbon fiber- reinforced polymer composites are known to compromise the material performance. Unfortunately, a comprehensive understanding of the formation mechanisms of micro-voids during polymer processing is currently lacking. The present study considers micro-void nucleation at fiber inter-faces, particularly those occurring at the end of suspended fibers. Micro-computed tomography (μCT) image acquisition techniques are used to characterize microstructural features of a 13wt% carbon fiber reinforced ABS compo-site bead manufactured via Large Area Additive Manufacturing (LAAM). The results reveal a significant collection of micro-voids at the tips of fibers approaching 80% of the total micro-void volume fraction. In addition, fiber tip micro-voids are relatively larger and less spherical than micro-voids isolated within the ABS matrix. Theoretical formulations of several known mechanisms for micro-void nucleation during LAAM material processing indicate that local-ized fluid pressure likely plays a pivotal role in micro-void formation. To better expose this mechanism, we simulate the hydrostatic flow-field pressure distri-bution surrounding a single rigid fiber suspended in simple shear flow using fi-nite element analysis (FEA). Computed results demonstrate that the polymer matrix pressure decreases significantly at the fiber ends where micro-void nucleation is experimentally observed to occur. Our approach provides the fiber surface pressure distribution in simple shear flow that typifies nozzle regions with extreme flow conditions, enhancing our understanding of micro-void development mechanisms as the polymer melt flows through the nozzle. 
    more » « less