Hop, Union, Generate: Explainable Multi-hop Reasoning without Rationale Supervision
- Award ID(s):
- 1901030
- PAR ID:
- 10560279
- Publisher / Repository:
- Association for Computational Linguistics
- Date Published:
- Page Range / eLocation ID:
- 16119 to 16130
- Format(s):
- Medium: X
- Location:
- Singapore
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)We prove the existence of an oblivious routing scheme that is poly(logn)-competitive in terms of (congestion + dilation), thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize (congestion + dilation), defined as follows: The dilation is the maximum path hop-length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have (congestion + dilation) within a poly(logn) factor of the best possible value. More precisely, for any integer hop-bound h, this oblivious routing scheme selects paths of length at most h · poly(logn) and is poly(logn)-competitive in terms of congestion in comparison to the best possible congestion achievable via paths of length at most h hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of R'acke [FOCS 2002, STOC 2008], which are O(logn)-competitive in terms of congestion, but are not competitive in terms of dilation.more » « less
-
Keil, Mark; Mondal, Debajyoti (Ed.)We adapt and generalize a heuristic for k-center clustering to the permutation case, where every pre x of the ordering is a guaranteed approximate solution. The one-hop greedy permutations work by choosing at each step the farthest unchosen point and then looking in its local neighborhood for a point that covers the most points at a certain scale. This balances the competing demands of reducing the coverage radius and also covering as many points as possible. This idea first appeared in the work of Garcia-Diaz et al. and their algorithm required O(n2 log n) time for a fi xed k (i.e. not the whole permutation). We show how to use geometric data structures to approximate the entire permutation in O(n log D) time for metrics sets with spread D. Notably, this running time is asymptotically the same as the running time for computing the ordinary greedy permutation.more » « less
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)We consider two-cost network design models in which edges of the input graph have an associated cost and length. We build upon recent advances in hop-constrained oblivious routing to obtain two sets of results. We address multicommodity buy-at-bulk network design in the nonuniform setting. Existing poly-logarithmic approximations are based on the junction tree approach [Chekuri et al., 2010; Guy Kortsarz and Zeev Nutov, 2011]. We obtain a new polylogarithmic approximation via a natural LP relaxation. This establishes an upper bound on its integrality gap and affirmatively answers an open question raised in [Chekuri et al., 2010]. The rounding is based on recent results in hop-constrained oblivious routing [Ghaffari et al., 2021], and this technique yields a polylogarithmic approximation in more general settings such as set connectivity. Our algorithm for buy-at-bulk network design is based on an LP-based reduction to h-hop constrained network design for which we obtain LP-based bicriteria approximation algorithms. We also consider a fault-tolerant version of h-hop constrained network design where one wants to design a low-cost network to guarantee short paths between a given set of source-sink pairs even when k-1 edges can fail. This model has been considered in network design [Luis Gouveia and Markus Leitner, 2017; Gouveia et al., 2018; Arslan et al., 2020] but no approximation algorithms were known. We obtain polylogarithmic bicriteria approximation algorithms for the single-source setting for any fixed k. We build upon the single-source algorithm and the junction-tree approach to obtain an approximation algorithm for the multicommodity setting when at most one edge can fail.more » « less