skip to main content


Search for: All records

Award ID contains: 1901030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Table2Text systems generate textual output based on structured data utilizing machine learning. These systems are essential for fluent natural language interfaces in tools such as virtual assistants; however, left to generate freely these ML systems often produce misleading or unexpected outputs. GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text. The tool utilizes a deep learning model designed with explicit control states. These controls allow users to globally constrain model generations, without sacrificing the representation power of the deep learning models. The visual interface makes it possible for users to interact with AI systems following a Refine-Forecast paradigm to ensure that the generation system acts in a manner human users find suitable. We report multiple use cases on two experiments that improve over uncontrolled generation approaches, while at the same time providing fine-grained control. A demo and source code are available at https://genni.vizhub.ai. 
    more » « less
  3. null (Ed.)
    Widely used in news, business, and educational media, infographics are handcrafted to effectively communicate messages about complex and often abstract topics including `ways to conserve the environment' and `coronavirus prevention'. The computational understanding of infographics required for future applications like automatic captioning, summarization, search, and question-answering, will depend on being able to parse the visual and textual elements contained within. However, being composed of stylistically and semantically diverse visual and textual elements, infographics pose challenges for current A.I. systems. While automatic text extraction works reasonably well on infographics, standard object detection algorithms fail to identify the stand-alone visual elements in infographics that we refer to as `icons'. In this paper, we propose a novel approach to train an object detector using synthetically-generated data, and show that it succeeds at generalizing to detecting icons within in-the-wild infographics. We further pair our icon detection approach with an icon classifier and a state-of-the-art text detector to demonstrate three demo applications: topic prediction, multi-modal summarization, and multi-modal search. Parsing the visual and textual elements within infographics provides us with the first steps towards automatic infographic understanding. 
    more » « less