skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 21, 2025

Title: Adaptive Thermal History De-identification for Privacy-preserving Data Sharing of Directed Energy Deposition Processes
Abstract In collaborative additive manufacturing (AM), sharing process data across multiple users can provide small to medium-sized manufacturers (SMMs) with enlarged training data for part certification, facilitating accelerated adoption of metal-based AM technologies. The aggregated data can be used to develop a process-defect model that is more precise, reliable, and adaptable. However, the AM process data often contains printing path trajectory information that can significantly jeopardize intellectual property (IP) protection when shared among different users. In this study, a new adaptive AM data deidentification method is proposed that aims to mask the printing trajectory information in the AM process data in the form of melt pool images. This approach integrates stochastic image augmentation (SIA) and adaptive surrogate image generation (ASIG) via tracking melt pool geometric changes to achieve a tradeoff between AM process data privacy and utility. As a result, surrogate melt pool images are generated with perturbed printing directions. In addition, a convolutional neural network (CNN) classifier is used to evaluate the proposed method regarding privacy gain (i.e., changes in the accuracy of identifying printing orientations) and utility loss (i.e., changes in the ability of detecting process anomalies). The proposed method is validated using data collected from two cylindrical specimens using the directed energy deposition (DED) process. The case study results show that the deidentified dataset significantly improved privacy preservation while sacrificing little data utility, once shared on the cloud-based AM system for collaborative process-defect modeling.  more » « less
Award ID(s):
2046515
PAR ID:
10560375
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASME Digital Collection
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
ISSN:
1530-9827
Page Range / eLocation ID:
1 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is an urgent need for developing collaborative process-defect modeling in metal-based additive manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable machine learning models for in-situ anomaly detection. The requirements for large data are especially challenging for small-to-medium manufacturers (SMMs), for whom collecting copious amounts of data is usually cost prohibitive. The objective of this research is to develop a secured data sharing mechanism for directed energy deposition (DED) based AM without disclosing product design information, facilitating secured data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise from data sharing, since AM process data contain confidential design information, such as the printing path. The proposed adaptive design de-identification for additive manufacturing (ADDAM) methodology integrates AM process knowledge into an adaptive de-identification procedure to mask the printing trajectory information in metal-based AM thermal history, which otherwise discloses substantial printing path information. This adaptive approach applies a flexible data privacy level to each thermal image based on its similarity with the other images, facilitating better data utility preservation while protecting data privacy. A real-world case study was used to validate the proposed method based on the fabrication of two cylindrical parts using a DED process. These results are expressed as a Pareto optimal solution, demonstrating significant improvements in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up to 30% with as little as 0% losses in dataset utility after de-identification. 
    more » « less
  2. Abstract Machine learning (ML) models are used for in-situ monitoring in additive manufacturing (AM) for defect detection. However, sensitive information stored in ML models, such as part designs, is at risk of data leakage due to unauthorized access. To address this, differential privacy (DP) introduces noise into ML, outperforming cryptography, which is slow, and data anonymization, which does not guarantee privacy. While DP enhances privacy, it reduces the precision of defect detection. This paper proposes combining DP with Hyperdimensional Computing (HDC), a brain-inspired model that memorizes training sample information in a large hyperspace, to optimize real-time monitoring in AM while protecting privacy. Adding DP noise to the HDC model protects sensitive information without compromising defect detection accuracy. Our studies demonstrate the effectiveness of this approach in monitoring anomalies, such as overhangs, using high-speed melt pool data analysis. With a privacy budget set at 1, our model achieved an F-score of 94.30%, surpassing traditional models like ResNet50, DenseNet201, EfficientNet B2, and AlexNet, which have performance up to 66%. Thus, the intersection of DP and HDC promises accurate defect detection and protection of sensitive information in AM. The proposed method can also be extended to other AM processes, such as fused filament fabrication. 
    more » « less
  3. Cracks and pores are two common defects in metallic additive manufacturing (AM) parts. In this paper, deep learning-based image analysis is performed for defect (cracks and pores) classification/detection based on SEM images of metallic AM parts. Three different levels of complexities, namely, defect classification, defect detection and defect image segmentation, are successfully achieved using a simple CNN model, the YOLOv4 model and the Detectron2 object detection library, respectively. The tuned CNN model can classify any single defect as either a crack or pore at almost 100% accuracy. The other two models can identify more than 90% of the cracks and pores in the testing images. In addition to the application of static image analysis, defect detection is also successfully applied on a video which mimics the AM process control images. The trained Detectron2 model can identify almost all the pores and cracks that exist in the original video. This study lays a foundation for future in situ process monitoring of the 3D printing process. 
    more » « less
  4. Abstract The process uncertainty induced quality issue remains the major challenge that hinders the wider adoption of additive manufacturing (AM) technology. The defects occurred significantly compromise structural integrity and mechanical properties of fabricated parts. Therefore, there is an urgent need in fast, yet reliable AM component certification. Most finite element analysis related methods characterize defects based on the thermomechanical relationships, which are computationally inefficient and cannot capture process uncertainty. In addition, there is a growing trend in data-driven approaches on characterizing the empirical relationships between thermal history and anomaly occurrences, which focus on modeling an individual image basis to identify local defects. Despite their effectiveness in local anomaly detection, these methods are quite cumbersome when applied to layer-wise anomaly detection. This paper proposes a novel in situ layer-wise anomaly detection method by analyzing the layer-by-layer morphological dynamics of melt pools and heat affected zones (HAZs). Specifically, the thermal images are first preprocessed based on the g-code to assure unified orientation. Subsequently, the melt pool and HAZ are segmented, and the global and morphological transition metrics are developed to characterize the morphological dynamics. New layer-wise features are extracted, and supervised machine learning methods are applied for layer-wise anomaly detection. The proposed method is validated using the directed energy deposition (DED) process, which demonstrates superior performance comparing with the benchmark methods. The average computational time is significantly shorter than the average build time, enabling in situ layer-wise certification and real-time process control. 
    more » « less
  5. null (Ed.)
    Abstract Laser-based additive manufacturing (LBAM) provides unrivalled design freedom with the ability to manufacture complicated parts for a wide range of engineering applications. Melt pool is one of the most important signatures in LBAM and is indicative of process anomalies and part defects. High-speed thermal images of the melt pool captured during LBAM make it possible for in situ melt pool monitoring and porosity prediction. This paper aims to broaden current knowledge of the underlying relationship between process and porosity in LBAM and provide new possibilities for efficient and accurate porosity prediction. We present a deep learning-based data fusion method to predict porosity in LBAM parts by leveraging the measured melt pool thermal history and two newly created deep learning neural networks. A PyroNet, based on Convolutional Neural Networks, is developed to correlate in-process pyrometry images with layer-wise porosity; an IRNet, based on Long-term Recurrent Convolutional Networks, is developed to correlate sequential thermal images from an infrared camera with layer-wise porosity. Predictions from PyroNet and IRNet are fused at the decision-level to obtain a more accurate prediction of layer-wise porosity. The model fidelity is validated with LBAM Ti–6Al–4V thin-wall structure. This is the first work that manages to fuse pyrometer data and infrared camera data for metal additive manufacturing (AM). The case study results based on benchmark datasets show that our method can achieve high accuracy with relatively high efficiency, demonstrating the applicability of the method for in situ porosity detection in LBAM. 
    more » « less