Abstract In collaborative additive manufacturing (AM), sharing process data across multiple users can provide small to medium-sized manufacturers (SMMs) with enlarged training data for part certification, facilitating accelerated adoption of metal-based AM technologies. The aggregated data can be used to develop a process-defect model that is more precise, reliable, and adaptable. However, the AM process data often contains printing path trajectory information that can significantly jeopardize intellectual property (IP) protection when shared among different users. In this study, a new adaptive AM data deidentification method is proposed that aims to mask the printing trajectory information in the AM process data in the form of melt pool images. This approach integrates stochastic image augmentation (SIA) and adaptive surrogate image generation (ASIG) via tracking melt pool geometric changes to achieve a tradeoff between AM process data privacy and utility. As a result, surrogate melt pool images are generated with perturbed printing directions. In addition, a convolutional neural network (CNN) classifier is used to evaluate the proposed method regarding privacy gain (i.e., changes in the accuracy of identifying printing orientations) and utility loss (i.e., changes in the ability of detecting process anomalies). The proposed method is validated using data collected from two cylindrical specimens using the directed energy deposition (DED) process. The case study results show that the deidentified dataset significantly improved privacy preservation while sacrificing little data utility, once shared on the cloud-based AM system for collaborative process-defect modeling.
more »
« less
Design De-Identification of Thermal History for Collaborative Process-Defect Modeling of Directed Energy Deposition Processes
Abstract There is an urgent need for developing collaborative process-defect modeling in metal-based additive manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable machine learning models for in-situ anomaly detection. The requirements for large data are especially challenging for small-to-medium manufacturers (SMMs), for whom collecting copious amounts of data is usually cost prohibitive. The objective of this research is to develop a secured data sharing mechanism for directed energy deposition (DED) based AM without disclosing product design information, facilitating secured data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise from data sharing, since AM process data contain confidential design information, such as the printing path. The proposed adaptive design de-identification for additive manufacturing (ADDAM) methodology integrates AM process knowledge into an adaptive de-identification procedure to mask the printing trajectory information in metal-based AM thermal history, which otherwise discloses substantial printing path information. This adaptive approach applies a flexible data privacy level to each thermal image based on its similarity with the other images, facilitating better data utility preservation while protecting data privacy. A real-world case study was used to validate the proposed method based on the fabrication of two cylindrical parts using a DED process. These results are expressed as a Pareto optimal solution, demonstrating significant improvements in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up to 30% with as little as 0% losses in dataset utility after de-identification.
more »
« less
- Award ID(s):
- 2046515
- PAR ID:
- 10399048
- Date Published:
- Journal Name:
- Journal of Manufacturing Science and Engineering
- Volume:
- 145
- Issue:
- 5
- ISSN:
- 1087-1357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Convolutional neural network (CNN), a type of deep learning algorithm, is a powerful tool for analyzing visual images. It has been actively investigated to monitor metal additive manufacturing (AM) processes for quality control and has been proven effective. However, typical CNN algorithms inherently have two issues when used in metal AM processes. First, in many cases, acquiring datasets with sufficient quantity and quality, as well as necessary information, is challenging because of technical difficulties and/or cost intensiveness. Second, determining a near-optimal CNN model takes considerable effort and is time-consuming. This is because the types and quality of datasets can be significantly different with respect to different AM processes and materials. The study proposes a novel concatenated ensemble learning method to obtain a flexible and robust algorithm for in-situ anomaly detection in wire + arc additive manufacturing (WAAM), a type of wire-based direct energy deposition (DED) process. For this, data, as well as machine learning models, were seamlessly integrated to overcome the limitations and difficulties in acquiring sufficient data and finding a near-optimal machine learning model. Using inexpensively obtainable and comprehensive datasets from the WAAM process, the proposed method was investigated and validated. In contrast to the one-dimensional and two-dimensional CNN models’ accuracies of 81.6 % and 88.6 %, respectively, the proposed concatenated ensemble model achieved an accuracy of 98 %.more » « less
-
Additive manufacturing (AM) has impacted the manufacturing of complex three-dimensional objects in multiple materials for a wide array of applications. However, additive manufacturing, as an upcoming field, lacks automated and specific design rules for different AM processes. Moreover, the selection of specific AM processes for different geometries requires expert knowledge, which is difficult to replicate. An automated and data-driven system is needed that can capture the AM expert knowledge base and apply it to 3D-printed parts to avoid manufacturability issues. This research aims to develop a data-driven system for AM process selection within the design for additive manufacturing (DFAM) framework for Industry 4.0. A Genetic and Evolutionary Feature Weighting technique was optimized using 3D CAD data as an input to identify the optimal AM technique based on several requirements and constraints. A two-stage model was developed wherein the stage 1 model displayed average accuracies of 70% and the stage 2 model showed higher average accuracies of up to 97.33% based on quantitative feature labeling and augmentation of the datasets. The steady-state genetic algorithm (SSGA) was determined to be the most effective algorithm after benchmarking against estimation of distribution algorithm (EDA) and particle swarm optimization (PSO) algorithms, respectively. The output of this system leads to the identification of optimal AM processes for manufacturing 3D objects. This paper presents an automated design for an additive manufacturing system that is accurate and can be extended to other 3D-printing processes.more » « less
-
Wang, Yan; Yang, Hui (Ed.)Abstract The scarcity of measured data for defect identification often challenges the development and certification of additive manufacturing processes. Knowledge transfer and sharing have become emerging solutions to small-data challenges in quality control to improve machine learning with limited data, but this strategy raises concerns regarding privacy protection. Existing zero-shot learning and federated learning methods are insufficient to represent, select, and mask data to share and control privacy loss quantification. This study integrates differential privacy in cybersecurity with federated learning to investigate sharing strategies of manufacturing defect ontology. The method first proposes using multilevel attributes masked by noise in defect ontology as the sharing data structure to characterize manufacturing defects. Information leaks due to the sharing of ontology branches and data are estimated by epsilon differential privacy (DP). Under federated learning, the proposed method optimizes sharing defect ontology and image data strategies to improve zero-shot defect classification given privacy budget limits. The proposed framework includes (1) developing a sharing strategy based on multilevel attributes in defect ontology with controllable privacy leaks, (2) optimizing joint decisions in differential privacy, zero-shot defect classification, and federated learning, and (3) developing a two-stage algorithm to solve the joint optimization, combining stochastic gradient descent search for classification models and an evolutionary algorithm for exploring data-sharing strategies. A case study on zero-shot learning of additive manufacturing defects demonstrated the effectiveness of the proposed method in data-sharing strategies, such as ontology sharing, defect classification, and cloud information use.more » « less
-
As the metal additive manufacturing (AM) field evolves with an increasing demand for highly complex and customizable products, there is a critical need to close the gap in productivity between metal AM and traditional manufacturing (TM) processes such as continuous casting, machining, etc., designed for mass production. This paper presents the development of the scalable and expeditious additive manufacturing (SEAM) process, which hybridizes binder jet printing and stereolithography principles, and capitalizes on their advantages to improve productivity. The proposed SEAM process was applied to stainless steel 420 (SS420) and the processing conditions (green part printing, debinding, and sintering) were optimized. Finally, an SS420 turbine fabricated using these conditions successfully reached a relative density of 99.7%. The SEAM process is not only suitable for a high-volume production environment but is also capable of fabricating components with excellent accuracy and resolution. Once fully developed, the process is well-suited to bridge the productivity gap between metal AM and TM processes, making it an attractive candidate for further development and future commercialization as a feasible solution to high-volume production AM.more » « less