skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase transitions in the Co-doped Heusler alloy Ni2Mn1− x Co x Ga
The phase transitions of a series of Co-doped Heusler alloys, Ni2Mn1−xCoxGa (0⩽x⩽0.2), were investigated experimentally using the magnetization measurements, x-ray diffraction, and calorimetric measurements up to their respective melting points. With increasing Co concentration, the structural transition temperatures, Curie temperatures, and melting points, were observed to increase, while the order–disorder transition temperatures decreased. Temperature-dependent x-ray diffraction experiments revealed two different crystal structures in the low-temperature martensite phase for different Co concentrations. However, above their respective structural transitions, both low-temperature crystal structures transformed into the L21 cubic structure. These findings enabled the construction of a complete magnetic and structural phase diagram for Ni2Mn1−xCoxGa, spanning from cryogenic temperatures to the melting points. The temperature-dependent XRD results revealed the abrupt changes in interatomic Mn–Mn distances, which validates the crucial role of Mn–Mn interatomic distance and the effect of the magnetic coupling competition in the structural stability between the martensite phase and austenite phase.  more » « less
Award ID(s):
1904636
PAR ID:
10560445
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
136
Issue:
23
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties of the Mn1−xCoxNiGe system have been investigated. Cobalt doping on the Mn site shifted the martensitic structural transition toward lower temperature until it was ultimately absent, leaving only a magnetic transition from a ferromagnetic (FM) to a paramagnetic (PM) state in the high-temperature hexagonal phase. Co-occurrence of the magnetic and structural transitions to form a first-order magnetostructural transition (MST) from the FM orthorhombic to the PM hexagonal phase was observed in samples with 0.05 < x < 0.20. An additional antiferromagnetic–ferromagnetic-like transition was observed in the martensite phase for 0.05 < x < 0.10, which gradually vanished with increasing Co concentration (x > 0.10) or magnetic field (H > 0.5 T). The application of external hydrostatic pressure shifted the structural transition to lower temperature until an MST was formed in samples with x = 0.03 and 0.05, inducing large magnetic entropy changes up to −80.3 J kg−1 K−1 (x = 0.03) for a 7-T field change under 10.6-kbar pressure. Similar to the effects of the application of hydrostatic pressure, an MST was formed near room temperature in the sample with x = 0.03 by annealing at high temperature (1200 °C) followed by quenching, resulting in a large magnetic entropy change of −56.2 J kg−1 K−1. These experimental results show that the application of pressure and thermal quenching, in addition to compositional variations, are effective methods to create magnetostructural transitions in the MnNiGe system, resulting in large magnetocaloric effects. 
    more » « less
  2. Abstract The phase transitions in MnNiGe compounds were explored by manipulating the heat treatment conditions and through hydrostatic pressure application. As the quenching temperature increased, both the first-order martensitic structural transition temperatures and magnetic transition temperatures decreased relative to those in the slowly-cooled samples. When the samples were quenched from 1200 C, the first-order martensitic structural transition temperature lowered by more than 200 K. The structural transitions also shifted to lower temperature with the application of hydrostatic pressure during measurement. Temperature-dependent x-ray diffraction results reveal that the changes of the cell parameters resulting from the structural transitions are nearly identical for all samples regardless of the extensive variation in their structural transition temperatures. In addition, neutron scattering measurements confirm the magnetic structure transition between simple and cycloidal spiral magnetic structures. 
    more » « less
  3. Metastable phases were formed in Mn1−xCoxNiGe (x=0.05 and 0.08) by annealing at 800 °C followed by rapid cooling, i.e., quenching, at ambient pressure (P=0) and under a pressure of P=3.5 GPa, and their phase transitions and associated magnetocaloric properties were investigated. The crystal cell volumes of the metastable phases decreased, and their structural transitions significantly shifted to lower temperatures relative to those of the slow-cooled compounds, with a greater reduction observed in the samples where the rapid cooling occurred under high pressures. The magnetic and structural transitions coupled to form a magnetostructural transition in the metastable phases, resulting in large magnetic entropy changes up to −79.6 J kg−1 K−1 (x=0.08) for a 7-T field change. The experimental results demonstrate thermal quenching and high-pressure annealing as alternative methods to create magnetostructural transitions, without modifying the compositions of the materials. 
    more » « less
  4. In this work, we investigate the synthesis, along with the structural and magnetic properties, of novel Mn-Co-NiO-based heterostructured nanocrystals (HNCs). The objective is to develop novel, well-structurally ordered inverted antiferromagnetic (AFM) NiO–ferrimagnetic (FiM) spinel phase overgrowth HNCs. Inverted HNCs are particularly promising for magnetic device applications because their magnetic properties are more easily controlled by having well-ordered AFM cores, which can result in magnetic structures having large coercivities, tunable blocking temperatures, and other enhanced magnetic effects. The synthesis of the HNCs is accomplished using a two-step process: In the first step, NiO nanoparticles are synthesized using a thermal decomposition method. Subsequently, Mn-Co overgrowth phases are grown on the NiO nanoparticles via hydrothermal nanophase epitaxy, using a fixed pH level (∼5.3) of the aqueous medium. This pH level was selected based on previous work in our laboratory showing that NiO/Mn 3 O 4 HNCs of constant size have optimal coercivity and exchange bias when synthesized at a pH of 5.0. The crystalline structure and gross morphology of the Mn-Co-NiO-based HNCs have been analyzed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. Analysis using these techniques shows that the HNCs are composed of a NiO core and a CoMn 2 O 4 overgrowth phase. Rietveld refinement of XRD data shows that the NiO core has the rocksalt (Fm[Formula: see text]m) cubic crystal structure and the CoMn 2 O 4 overgrowth has the spinel ( I4 1 / amd) crystal structure. Moreover, an increased relative amount of the CoMn 2 O 4 overgrowth phase is deposited with decreasing NiO core particle size during the synthesis of the HNCs. The results from PPMS magnetization and high-resolution transmission electron microscopy (HRTEM) characterization of the Mn-Co-NiO-based HNCs are discussed herein. 
    more » « less
  5. MnCoGe-based materials have the potential to exhibit giant magnetocaloric effects due to coupling between magnetic ordering and a martensitic phase transition. Such coupling can be realized by matching the temperatures of the magnetic and structural phase transitions. To understand the site preference of different elements and the effect of hole or electron doping on the stability of different polymorphs of MnCoGe, crystal orbital Hamilton population (COHP) analysis has been employed for the first time to evaluate peculiarities of chemical bonding in this material. The shortest Mn–Mn bond in the structure is found to be pivotal to the observed ferromagnetic behavior and structural stability of hexagonal MnCoGe. Based on this insight, eliminating anti-bonding features of the shortest Mn-Mn bond at the Fermi energy is proposed as a feasible way to stabilize the hexagonal polymorph, which is then realized experimentally by substitution of Zn for Ge. The hexagonal MnCoGe structure is stabilized due to depopulation of the anti-bonding states and strengthening of the Mn–Mn bonding. This change in chemical bonding leads to anisotropic evolution of lattice parameters. The structural and magnetic properties of Zn-doped MnCoGe have been elucidated by synchrotron X-ray diffraction and magnetic measurements, respectively. 
    more » « less