skip to main content


Search for: All records

Award ID contains: 1904636

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metastable phases were formed in Mn1−xCoxNiGe (x=0.05 and 0.08) by annealing at 800 °C followed by rapid cooling, i.e., quenching, at ambient pressure (P=0) and under a pressure of P=3.5 GPa, and their phase transitions and associated magnetocaloric properties were investigated. The crystal cell volumes of the metastable phases decreased, and their structural transitions significantly shifted to lower temperatures relative to those of the slow-cooled compounds, with a greater reduction observed in the samples where the rapid cooling occurred under high pressures. The magnetic and structural transitions coupled to form a magnetostructural transition in the metastable phases, resulting in large magnetic entropy changes up to −79.6 J kg−1 K−1 (x=0.08) for a 7-T field change. The experimental results demonstrate thermal quenching and high-pressure annealing as alternative methods to create magnetostructural transitions, without modifying the compositions of the materials.

     
    more » « less