skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling morphosyntactic agreement as neural search: a case study of Hindi-Urdu
Agreement is central to the morphosyntax of  many natural languages. Within contemporary linguistic theory, agreement relations have often been analyzed as the result of a structure-sensitive search operation. Neural language models, which lack an explicit bias for this type of operation, have shown mixed success at capturing morphosyntactic agreement phenomena. This paper develops an alternative neural model that formalizes the search operation in a fully differentiable way using gradient neural attention, and evaluates the model's ability to learn the complex agreement system of Hindi-Urdu from a large-scale dependency treebank and smaller synthetic datasets. We find that this model outperforms standard architectures at generalizing agreement patterns to held-out examples and structures.  more » « less
Award ID(s):
1941593
PAR ID:
10560507
Author(s) / Creator(s):
;
Publisher / Repository:
University of Massachusetts Amherst Libraries
Date Published:
Journal Name:
Proceedings of the Society for Computation in Linguistics
Volume:
7
Issue:
1
ISSN:
2834-1007
Page Range / eLocation ID:
227–239
Subject(s) / Keyword(s):
agreement morphosyntax computational modeling neural networks Hindi-Urdu
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, a two-level deep learning framework is presented to model human information foraging behavior with search engines. A recurrent neural network architecture is designed using LSTM as the base unit to explicitly consider the temporal and spatial dependencies of information scents, the key concept in Information Foraging Theory. The target is to predict several major search behaviors, such as query abandonment, query reformulation, number of clicks, and information gain. The memory capability and the sequence structure of LSTM allow to naturally mimic not only what users are perceiving and performing at the moment but also what they have seen and learned from the past during the search dynamics. The promising results indicate that our information scent models with different input variations were better, compared to the state-of-the art neural click models, at predicting some search behaviors. When incorporating the knowledge from a previous query in the same search session, the prediction of current query abandonment, pagination, and information gain has been improved. Compared to the well known neural click models that model search behaviors under a single search query thread, this study takes a broader view to consider an entire search session which may contain multiple queries. More importantly, our model takes the search result relevance pattern on the Search Engine Results Pages (SERP) as a whole as the information scent input to the deep learning model, instead of considering one search result at each step. The results have insights on the impact of information scents on how people forage for information, which has implications for designing or refining a set of design guidelines for search engines. 
    more » « less
  2. Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous systems. Increasingly, they are deployed in high-assurance applications, leading to a compelling use case for formal verification approaches. In this paper, we present an efficient range estimation algorithm that iterates between an expensive global combinatorial search using mixed-integer linear programming problems, and a relatively inexpensive local optimization that repeatedly seeks a local optimum of the function represented by the NN. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate applications of our approach to computing flowpipes for neural network-based feedback controllers. We show that the use of local search in conjunction with mixed-integer linear programming solvers effectively reduces the combinatorial search over possible combinations of active neurons in the network by pruning away suboptimal nodes. 
    more » « less
  3. Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous systems. Increasingly, they are deployed in high-assurance applications, leading to a compelling use case for formal verification approaches. In this paper, we present an efficient range estimation algorithm that iterates between an expensive global combinatorial search using mixed-integer linear programming problems, and a relatively inexpensive local optimization that repeatedly seeks a local optimum of the function represented by the NN. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate applications of our approach to computing flowpipes for neural network-based feedback controllers. We show that the use of local search in conjunction with mixed-integer linear programming solvers effectively reduces the combinatorial search over possible combinations of active neurons in the network by pruning away suboptimal nodes. 
    more » « less
  4. Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR.Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embed-dings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited. 
    more » « less
  5. Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR.Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited. 
    more » « less