skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Learning of Human Information Foraging Behavior with a Search Engine
In this paper, a two-level deep learning framework is presented to model human information foraging behavior with search engines. A recurrent neural network architecture is designed using LSTM as the base unit to explicitly consider the temporal and spatial dependencies of information scents, the key concept in Information Foraging Theory. The target is to predict several major search behaviors, such as query abandonment, query reformulation, number of clicks, and information gain. The memory capability and the sequence structure of LSTM allow to naturally mimic not only what users are perceiving and performing at the moment but also what they have seen and learned from the past during the search dynamics. The promising results indicate that our information scent models with different input variations were better, compared to the state-of-the art neural click models, at predicting some search behaviors. When incorporating the knowledge from a previous query in the same search session, the prediction of current query abandonment, pagination, and information gain has been improved. Compared to the well known neural click models that model search behaviors under a single search query thread, this study takes a broader view to consider an entire search session which may contain multiple queries. More importantly, our model takes the search result relevance pattern on the Search Engine Results Pages (SERP) as a whole as the information scent input to the deep learning model, instead of considering one search result at each step. The results have insights on the impact of information scents on how people forage for information, which has implications for designing or refining a set of design guidelines for search engines.  more » « less
Award ID(s):
1910696
PAR ID:
10188328
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of 2019 ACM SIGIR International Conference on the Theory of Information Retrieval
Page Range / eLocation ID:
185 to 192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the roles ofsearch gainandcostin users' search decision‐making is a key topic in interactive information retrieval (IIR). While previous research has developed user models based onsimulatedgains and costs, it is unclear how users' actualperceptions of search gains and costsform and change during search interactions. To address this gap, our study adopted expectation‐confirmation theory (ECT) to investigate users' perceptions of gains and costs. We re‐analyzed data from our previous study, examining how contextual and search features affect users' perceptions and how their expectation‐confirmation states impact their following searches. Our findings include: (1) The point where users' actual dwell time meets their constant expectation may serve as a reference point in evaluating perceived gain and cost; (2) these perceptions are associated with in situ experience represented by usefulness labels, browsing behaviors, and queries; (3) users' current confirmation states affect their perceptions of Web page usefulness in the subsequent query. Our findings demonstrate possible effects of expectation‐confirmation, prospect theory, and information foraging theory, highlighting the complex relationships among gain/cost, expectations, and dwell time at the query level, and the reference‐dependent expectation at the session level. These insights enrich user modeling and evaluation in human‐centered IR. 
    more » « less
  2. A key untapped feature of game-based learning environments is their capacity to generate a rich stream of fine-grained learning interaction data. The learning behaviors captured in these data provide a wealth of information on student learning, which stealth assessment can utilize to unobtrusively draw inferences about student knowledge to provide tailored problem-solving support. In this paper, we present a long short-term memory network (LSTM)-based stealth assessment framework that takes as input an observed sequence of raw game-based learning environment interaction data along with external pre-learning measures to infer students’ post-competencies. The framework is evaluated using data collected from 191 middle school students interacting with a game-based learning environment for middle grade computational thinking. Results indicate that LSTM-based stealth assessors induced from student game-based learning interaction data outperform comparable models that required labor-intensive hand-engineering of input features. The findings suggest that the LSTM-based approach holds significant promise for evidence modeling in stealth assessment. 
    more » « less
  3. We propose a multi-task learning framework to jointly learn document ranking and query suggestion for web search. It consists of two major components, a document ranker and a query recommender. Document ranker combines current query and session information and compares the combined representation with document representation to rank the documents. Query recommender tracks users’ query reformulation sequence considering all previous in-session queries using a sequence to sequence approach. As both tasks are driven by the users’ underlying search intent, we perform joint learning of these two components through session recurrence, which encodes search context and intent. Extensive comparisons against state-of-the-art document ranking and query suggestion algorithms are performed on the public AOL search log, and the promising results endorse the effectiveness of the joint learning framework. 
    more » « less
  4. We propose a multi-task learning framework to jointly learn document ranking and query suggestion for web search. It consists of two major components, a document ranker and a query recommender. Document ranker combines current query and session information and compares the combined representation with document representation to rank the documents. Query recommender tracks users’ query reformulation sequence considering all previous in-session queries using a sequence to sequence approach. As both tasks are driven by the users’ underlying search intent, we perform joint learning of these two components through session recurrence, which encodes search context and intent. Extensive comparisons against state-of-the-art document ranking and query suggestion algorithms are performed on the public AOL search log, and the promising results endorse the effectiveness of the joint learning framework. 
    more » « less
  5. Estimating the quality of a result list, often referred to as query performance prediction (QPP), is a challenging and important task in information retrieval. It can be used as feedback to users, search engines, and system administrators. Although predicting the performance of retrieval models has been extensively studied for the ad-hoc retrieval task, the effectiveness of performance prediction methods for question answering (QA) systems is relatively unstudied. The short length of answers, the dominance of neural models in QA, and the re-ranking nature of most QA systems make performance prediction for QA a unique, important, and technically interesting task. In this paper, we introduce and motivate the task of performance prediction for non-factoid question answering and propose a neural performance predictor for this task. Our experiments on two recent datasets demonstrate that the proposed model outperforms competitive baselines in all settings. 
    more » « less