skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Viscosity of Mono‐ and Polydisperse Mixtures of Photopolymer and Rigid Spheres for Manufacturing of Engineered Composite Materials Using Vat Photopolymerization
Vat photopolymerization (VP) additive manufacturing involves selectively curing low‐viscosity photopolymers via exposure to ultraviolet light in a layer‐wise fashion. Dispersing filler materials in the photopolymer enables tailored end‐use properties, but also increases the viscosity and the timescale associated with interparticle network structural recovery postshear. These rheological properties influence self‐leveling and recoating of the liquid photopolymer mixture during VP. Herein, viscosity of photopolymer and rigid spherical glass microparticles (filler) is experimentally determined as a function of filler fraction, filler size distribution (mono‐ and polydisperse), shear rate, and temperature, which are important VP process parameters. Employing existing viscosity models for mono‐ and polydisperse polymer mixtures demonstrates that particle–particle interactions and the formation of nonspherical clusters of particles strongly affect the viscosity of both monodisperse and polydisperse mixtures with particle volume fractions > 0.05 due to agglomeration/deagglomeration of clusters at elevated shear rates. Consequently, unmodified viscosity models, which assume uniformly dispersed, rigid, spherical particles, are applicable only for mixtures with particle volume fractions < 0.05. It is shown that modifying model parameters such as the fluidity limit and intrinsic viscosity, which explicitly account for nonspherical clusters of particles, improves agreement between viscosity models and experiments, in particular when using a fractal approach.  more » « less
Award ID(s):
2130083
PAR ID:
10560532
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
26
Issue:
10
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultrasound‐directed self‐assembly (DSA) uses ultrasound waves to organize and orient particles dispersed in a fluid medium into specific patterns. Combining ultrasound DSA with vat photopolymerization (VP) enables manufacturing materials layer‐by‐layer, wherein each layer the organization and orientation of particles in the photopolymer is controlled, which enables tailoring the properties of the resulting composite materials. However, the particle packing density changes with time and location as particles organize into specific patterns. Hence, relating the ultrasound DSA process parameters to the transient local particle packing density is important to tailor the properties of the composite material, and to determine the maximum speed of the layer‐by‐layer VP process. This paper theoretically derives and experimentally validates a 3D ultrasound DSA model and evaluates the local particle packing density at locations where particles assemble as a function of time and ultrasound DSA process parameters. The particle packing density increases with increasing particle volume fraction, decreasing particle size, and decreasing fluid medium viscosity is determined. Increasing the particle size and decreasing the fluid medium viscosity decreases the time to reach steady‐state. This work contributes to using ultrasound DSA and VP as a materials manufacturing process. 
    more » « less
  2. The stability of a rigid particle in yield stress fluids, comprised of soft particle glasses (SPGs), is investigated in shear flow under an applied external force, such as weight, using particle dynamics simulations. Results provide the critical force threshold, in terms of the dynamic yield stress and the flow strength, required to initiate sedimentation of the rigid particle over a wide range of shear rates and volume fractions. The streamlines of the SPGs show local disturbances when the rigid particle settles. The form of these disturbances is consistent with the microdynamics and microstructure response of the neighboring soft particles of the sedimenting rigid particle. Sedimenting particle induces non-affine displacement to the suspensions at low shear rates and high applied forces, while these dynamical events are localized and suppressed at high shear rates. Stability diagrams, which provide the conditions of the sedimentation of the rigid particle, are presented in terms of the applied force and the shear rate. These individual stability diagrams at each volume fraction map onto a universal stability diagram when the external force is scaled by the dynamic yield stress and shear rate with a ratio of the solvent viscosity to the low-frequency modulus of the SPGs. 
    more » « less
  3. Dense suspensions of particles in viscous liquid often demonstrate the striking phenomenon of abrupt shear thickening, where their viscosity increases strongly with increase of the imposed stress or shear rate. In this work, discrete-particle simulations accounting for short-range hydrodynamic, repulsive, and contact forces are performed to simulate flow of shear thickening bidisperse suspensions, with the packing parameters of large-to-small particle radius ratio δ = 3 and large particle fraction ζ = 0.15, 0.50, and 0.85. The simulations are carried out for volume fractions 0.54 ≤ ϕ ≤ 0.60 and a wide range of shear stresses. The repulsive forces, of magnitude F R , model the effects of surface charge and electric double-layer overlap, and result in shear thinning at small stress, with shear thickening beginning at stresses σ ∼ F R a −2 . A crossover scaling analysis used to describe systems with more than one thermodynamic critical point has recently been shown to successfully describe the experimentally-observed shear thickening behavior in suspensions. The scaling theory is tested here on simulated shear thickening data of the bidisperse mixtures, and also on nearly monodisperse suspensions with δ = 1.4 and ζ = 0.50. Presenting the viscosity in terms of a universal crossover scaling function between the frictionless and frictional maximum packing fractions collapses the viscosity for most of the suspensions studied. Two scaling regimes having different exponents are observed. The scaling analysis shows that the second normal stress difference N 2 and the particle pressure Π also collapse on their respective curves, with the latter featuring a different exponent from the viscosity and normal stress difference. The influence of the fraction of frictional contacts, one of the parameters of the scaling analysis, and its dependence on the packing parameters are also presented. 
    more » « less
  4. An exact pairwise hydrodynamic theory is developed for the flow-induced spatial distribution of particles in dilute polydisperse suspensions undergoing two-dimensional unidirectional flows, including shear and planar Poiseuille flows. Coupled diffusive fluxes and a drift velocity are extracted from a Boltzmann-like master equation. A boundary layer is predicted in regions where the shear rate vanishes with thickness set by the radii of the upstream collision cross-sections for pair interactions. An analysis of this region yields linearly vanishing drift velocities and non-vanishing diffusivities where the shear rate vanishes, thus circumventing the source of the singular particle distribution predicted by the usual models. Outside of the boundary layer, a power-law particle distribution is predicted with exponent equal to minus half the exponent of the local shear rate. Trajectories for particles with symmetry-breaking contact interactions (e.g. rough particles, permeable particles, emulsion drops) are analytically integrated to yield particle displacements given by quadratures of hard-sphere (or spherical drop) mobility functions. Using this analysis, stationary particle distributions are obtained for suspensions in Poiseuille flow. The scale for the particle distribution in monodisperse suspensions is set by the collision cross-section of the particles but its shape is almost universal. Results for polydisperse suspensions show size segregation in the central boundary layer with enrichment of smaller particles. Particle densities at the centreline scale approximately with the inverse square root of particle size. A superposition approximation reliably predicts the exact results over a broad range of parameters. The predictions agree with experiments in suspensions up to approximately 20 % volume fraction without fitting parameters. 
    more » « less
  5. Three-dimensional printing (3DP) of functional materials is increasingly important for advanced applications requiring objects with complex or custom geometries or prints with gradients or zones with different properties. A common 3DP technique is direct ink writing (DIW), in which printable inks are comprised of a fluid matrix filled with solid particles, the latter of which can serve a dual purpose of rheology modifiers to enable extrusion and functional fillers for performance-related properties. Although the relationship between filler loading and viscosity has been described for many polymeric systems, a thorough description of the rheological properties of three-dimensional (3D) printable composites is needed to expedite the creation of new materials. In this manuscript, the relationship between filler loading and printability is studied using model paraffin/photopolymer composite inks containing between 0 and 73 vol. % paraffin microbeads. The liquid photopolymer resin is a Newtonian fluid, and incorporating paraffin microbeads increases the ink viscosity and imparts shear-thinning behavior, viscoelasticity, and thixotropy, as established by parallel plate rheometry experiments. Using Einstein and Batchelor's work on colloidal suspension rheology, models were developed to describe the thixotropic behavior of inks, having good agreement with experimental results. Each of these properties contributes to the printability of highly filled ([Formula: see text]43 vol. % paraffin) paraffin/photopolymer composite inks. Through this work, the ability to quantify the ideal rheological properties of a DIW ink and to selectively control and predict its rheological performance will facilitate the development of 3D printed materials with tunable functionalities, thus, advancing 3DP technology beyond current capabilities. 
    more » « less