There is a lack of access to critical knowledge on machine ethics and the impacts of technology on individuals and communities in everyday life. This project pioneers an inclusive curriculum design process to broaden accessibility to machine ethics education. Our approach uses a ''source'' course to develop materials for seven "target" courses. The source course is a machine ethics curriculum development course in which students and faculty collaboratively build curricular materials for integration into non-computer science courses. Here we describe the development of the ''source'' course using a curriculum co-creation process that leverages student and faculty expertise. The process emphasizes an inclusive design approach, rooted in continuous stakeholder feedback and consistent, transparent communication. The products of this process include course materials that incorporate underrepresented ethical frameworks. Additionally, it features peer-reviewed journal assignments that promote reflective learning and sharing of diverse perspectives, as well as a final module project in which students collaborate with faculty to co-create curricular materials. Our approach aims to broaden a culturally relevant understanding of ethical challenges in technology while ensuring that the curriculum resonates with diverse student backgrounds. Our presentation will describe key insights about the process and products of our curriculum design. 
                        more » 
                        « less   
                    
                            
                            Critical, Motivated, Hopeful: Empowering Students Through Sociotechnical Data Science Ethics Education
                        
                    
    
            Ethics education and societal understandings are critical to an education in engineering. However, researchers have found that students do not always see ethics as a part of engineering. In this paper, we present a sociotechnical approach to teaching ethics around the topic of surveillance technology in an interdisciplinary, co-designed and co-taught course. We describe and reflect on our curricular and pedagogical approach that uplifts cross-disciplinary dialogue, social theoretical frameworks to guide ethical thinking, and highlighting collective action and resistance in our course content and praxis to inspire students. Through a reflexive thematic analysis of student reflection writing, we examine the ways students relate society and technology, generate ethical skills and questions, and are motivated to act. We find that, in fact, this approach resonates with student experience and desire for discipline-specific ethical analysis, and is highly motivating. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2021874
- PAR ID:
- 10560874
- Publisher / Repository:
- Philosophy Documentation Center
- Date Published:
- Journal Name:
- Teaching Ethics
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1544-4031
- Page Range / eLocation ID:
- 97 to 127
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With active learning strategies becoming a preferred method of instruction, a collaboration of authors from four universities (University of Pittsburgh, University of Connecticut, Rowan University and New Jersey Institute of Technology) are investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. This paper offers an overview and results of the progress to date of this three year, NSF Improving Undergraduate STEM Education (IUSE) grant that aims to (1) characterize the ethical awareness and decision making of first-year engineering students, (2) develop game-based learning interventions focused on ethical decision making, and (3) determine how (and why) game-based approaches affect students’ ethical awareness in engineering and the advantages of such approaches over non game-based approaches. Now in its second year, the authors have conducted a preliminary analysis of first-year students' ethical knowledge and organization via a concept mapping approach and have measured students' ethical reasoning using the Defining Issues Test 2 (DIT2) and Engineering Ethics Reasoning Instrument (EERI). Further, the authors have developed a suite of ethics-driven games that have been implemented across three of the universities, engaging over 400 first-year engineering students. Evaluation data has also been gathered for further game development and to assess initial student engagement and learning. Year 1 has provided insight into where first-year engineering students “are at” in terms of ethical knowledge and reasoning when they come to college, and how game-based instruction can be effective in the development of these students into moral agents who understand the consequences of their decisions. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives.more » « less
- 
            null (Ed.)While formal coursework remains one of the most common strategies for developing ethics knowledge and competence among engineering students, ethical situations also surface in many other settings. In our own research on engineering student perceptions of ethics and social responsibility, we found that many engineering interns and co-ops reported encountering ethical issues or dilemmas in the workplace. To further illuminate such encounters, this paper aims to: 1) identify and describe real-world ethical issues encountered by engineering students in workplace settings, and 2) investigate what students learned from these experiences. We address these objectives by reporting select results from an ongoing qualitative analysis of 33 interviews with undergraduate students in their fourth year of college. We more specifically present a series of illustrative cases drawn from four of the interviews, selected because the participants described specific work situations in considerable detail and the cases represent a wide variety of ethical concerns. The purpose for sharing these cases is threefold. First, we note some specific lessons that our subjects learned (or failed to learn) through the selected cases. Second, we argue that the workplace is a particularly rich setting for learning about professional ethics. Third, we make recommendations for better scaffolding and supporting student learning in workplace settings. We expect this paper will be of particular interest to engineering ethics scholars studying where and how students learn about ethics, instructors looking for ways to enhance and extend ethics learning, and students preparing for internship, co-op, and/or full-time job roles.more » « less
- 
            In this paper, we argue that engineering ethics education does have moral implications. More specifically, practices in engineering ethics education can lead to negative moral consequences if not conducted appropriately. Engineering ethics educators are often passionate about teaching students ways to examine the ethical implications of engineering and technology. However, ethics educators may overlook the moral significance of their instructional classroom practices. In this paper, we discuss two issues: First, we discuss the moral impacts of ethics curriculum and pedagogies on students’ learning experiences. Then we discuss the professional responsibilities of educators who are involved in designing ethics learning experiences for engineering students. The reflections presented in this paper will serve as catalysts for more comprehensive discussions regarding the impact of engineering ethics education on the ethical development of engineering students.more » « less
- 
            The past twenty years have seen the blossoming of ethics education in undergraduate engineering programs, largely as a response to the large-scale and high-impact engineering disasters that have occurred since the turn of the century. The functional form of this education differs significantly among institutions, and in recent years active learning that demonstrates a strong impact on students’ retention and synthesis of new material have taken hold as the preferred educational methodology. Among active learning strategies, gamified or playful learning has grown in popularity, with substantial evidence indicating that games can increase student participation and social interaction with their classmates and with the subject matter. A key goal of engineering ethics education is for students to learn how to identify, frame, and resolve ethical dilemmas. These dilemmas occur naturally in social situations, in which an individual must reconcile opposing priorities and viewpoints. Thus, it seems natural that as a part of their ethics education, students should discuss contextualized engineering ethical situations with their peers. How these discussions play out, and the manner in which students (particularly first-year engineering students) address and resolve ethical dilemmas in a group setting is the main topic of this research paper. In this study, first-year engineering students from three universities across the northeastern USA participated in group discussions involving engineering ethical scenarios derived from the Engineering Ethics Reasoning Instrument (EERI) and Toxic Workplaces: A Cooperative Ethics Card Game (a game developed by the researchers). Questions were posed to the student groups, which center upon concepts such as integrity, conflicting obligations, and the contextual nature of ethical decision making. An a priori coding schema based on these concepts was applied to analyze the student responses, based upon earlier iterations of this procedure performed in previous years of the study. The primary results from this research will aim to provide some insight about first-year engineering students' mindsets when identifying, framing, and resolving ethical dilemmas. This information can inform ethics education design and development strategies. Furthermore, the experimental procedure is also designed to provide a curated series of ethical engineering scenarios with accompanying discussion questions that could be adopted in any first-year classroom for instructional and evaluative purposes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    