skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The root hairless mutant buzz in Brachypodium distachyon shows increased nitrate uptake and signaling but does not affect overall nitrogen use efficiency
SUMMARY Root systems are uniquely adapted to fluctuations in external nutrient availability. In response to suboptimal nitrogen conditions, plants adopt a root foraging strategy that favors a deeper and more branched root architecture, enabling them to explore and acquire soil resources. This response is gradually suppressed as nitrogen conditions improve. However, the root hairless mutantbuzzinBrachypodium distachyonshows a constitutive nitrogen‐foraging phenotype with increased root growth and root branching under nitrate‐rich conditions. To investigate how this unique root structure and root hair morphology in thebuzzmutant affects nitrate metabolism, we measured the expression of nitrate‐responsive genes, nitrate uptake and accumulation, nitrate reductase activity, and nitrogen use efficiency. We found that nitrate responses were upregulated by low nitrate conditions inbuzzrelative to wild type and correlated with increased expression of nitrate transport genes. In addition,buzzmutants showed increased nitrate uptake and a higher accumulation of nitrate in shoots. Thebuzzmutant also showed increased nitrate reductase activity in the shoots under low nitrate conditions. However, developmentally mature wild‐type andbuzzplants grown under low nitrate had similar nitrogen use efficiencies. These findings suggest thatBUZZinfluences nitrate signaling and that enhanced responsiveness to nitrate is required inbuzzseedlings to compensate for the lack of root hairs. These data question the importance of root hairs in enhancing nitrate uptake and expand our understanding of how root hairs in grasses affect physiological responses to low nitrate availability.  more » « less
Award ID(s):
1840761
PAR ID:
10561147
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
120
Issue:
6
ISSN:
0960-7412
Format(s):
Medium: X Size: p. 2738-2751
Size(s):
p. 2738-2751
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Legumes acquire fixed nitrogen (N) from the soil and through endosymbiotic association with diazotrophic bacteria. However, establishing and maintaining N2-fixing nodules are expensive for the host plant, relative to taking up N from the soil. Therefore, plants suppress symbiosis when N is plentiful and enhance symbiosis when N is sparse. Here, we show that the nitrate transporter MtNRT2.1 is required for optimal nodule establishment in Medicago truncatula under low-nitrate conditions and the repression of nodulation under high-nitrate conditions. The NIN-like protein (NLP) MtNLP1 is required for MtNRT2.1 expression and regulation of nitrate uptake/transport under low- and high-nitrate conditions. Under low nitrate, the gene encoding the C-terminally encoded peptide (CEP) MtCEP1 was more highly expressed, and the exogenous application of MtCEP1 systemically promoted MtNRT2.1 expression in a compact root architecture 2 (MtCRA2)-dependent manner. The enhancement of nodulation by MtCEP1 and nitrate uptake were both impaired in the Mtnrt2.1 mutant under low nitrate. Our study demonstrates that nitrate uptake by MtNRT2.1 differentially affects nodulation at low- and high-nitrate conditions through the actions of MtCEP1 and MtNLP1. 
    more » « less
  2. Abstract Glutaredoxins (GRXs) are small oxidoreductase enzymes that can reduce disulfide bonds in target proteins. The class III GRX gene family is unique to land plants, andArabidopsis thalianahas 21 class III GRXs, which remain largely uncharacterized. About 80% ofA. thalianaclass III GRXs are transcriptionally regulated by nitrate, and several recent studies have suggested roles for these GRXs in nitrogen signaling. Our objective was to functionally characterize two nitrate‐induced GRX genes,AtGRXS5andAtGRXS8, defining their roles in signaling and development in theA. thalianaroot. We demonstrated thatAtGRXS5andAtGRXS8are primarily expressed in root and shoot vasculature (phloem), and that the corresponding GRX proteins display nucleo‐cytosolic subcellular localization. Ectopic expression ofAtGRXS8in transgenic plants caused major alterations in root system architecture: Normal primary root development, but a near absence of lateral roots. RNA sequencing demonstrated that the roots ofAtGRXS8‐overexpressing plants show strongly reduced transcript abundance for many primary nitrate response genes, including the major high‐affinity nitrate transporters. Correspondingly, high‐affinity nitrate uptake and the transport of nitrate from roots to shoots are compromised inAtGRXS8‐overexpressing plants. Finally, we demonstrated that the AtGRXS8 protein can physically interact with the TGA1 and TGA4 transcription factors, which are central regulators of early transcriptional responses to nitrate inA. thalianaroots. Overall, these results suggest thatAtGRXS8acts to quench both transcriptional and developmental aspects of primary nitrate response, potentially by interfering with the activity of the TGA1 and TGA4 transcription factors. 
    more » « less
  3. Summary Arbuscular mycorrhizal fungi help their host plant in the acquisition of nutrients, and this association is itself impacted by soil nutrient levels. High phosphorus levels inhibit the symbiosis, whereas high nitrogen levels enhance it. The genetic mechanisms regulating the symbiosis in response to soil nutrients are poorly understood. Here, we characterised the symbiotic phenotypes in fourMedicago truncatula Tnt1‐insertion mutants affected in arbuscular mycorrhizal colonisation. We located theirTnt1insertions and identified alleles for two genes known to be involved in mycorrhization,RAM1andKIN3. We compared the effects of thekin3‐2andram1‐4mutations on gene expression, revealing that the two genes alter the expression of overlapping but not identical gene sets, suggesting thatRAM1acts upstream ofKIN3.Additionally,KIN3appears to be involved in the suppression of plant defences in response to the fungal symbiont.KIN3is located on the endoplasmic reticulum of arbuscule‐containing cortical cells, andkin3‐2mutants plants hosted significantly fewer arbuscules than the wild type.KIN3plays an essential role in the symbiotic response to soil nitrogen levels, as, contrary to wild‐type plants, thekin3‐2mutant did not exhibit increased root colonisation under high nitrogen. 
    more » « less
  4. Beckles, Diane (Ed.)
    Abstract Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, are involved in the regulation of multiple signaling pathways in plants. OsDEP1 (a Gγ subunit) of rice and TaNBP1 (a Gβ subunit) of wheat are homologs of Arabidopsis AGG3 and AGB1, respectively, which are regulators of grain size and also involved in nitrogen responses. However, the function of Arabidopsis G-proteins in nitrogen utilization under different nitrogen conditions has not been fully investigated. In this study, to evaluate the role of Arabidopsis G-proteins in yield and nitrogen use efficiency (NUE), overexpression transgenic lines AtGPA1, AtAGB1 together with AtAGG1 (AGB1-AGG1), AtAGB1 together with AtAGG2 (AGB1-AGG2), and AtAGB1 together with AtAGG3 (AGB1-AGG3) were created in Brassica napus ‘K407’. Analysis of multiple transgenic B. napus lines showed that overexpression of GPA1, AGB1-AGG1, AGB1-AGG2, or AGB1-AGG3 led to increased biomass of seedling plants, including a well-developed root system, and increased nitrogen uptake under low and high nitrogen conditions. The activity of glutamine synthetase, a key nitrogen assimilating enzyme, and the expression levels of genes that are involved in nitrogen uptake and assimilation were significantly increased in overexpression plants under the low nitrogen condition. These properties enabled overexpression plants to increase the number of seeds per silique by 12–27% only under the low nitrogen condition, effectively improving yield per plant by 9–69% and NUE by 7–49%. These results reveal roles of G-proteins in regulating seed traits and NUE, and provide a strategy that can substantially improve crop yield and NUE. 
    more » « less
  5. Shou, Wenying (Ed.)
    Bacteria sense population density via the cell–cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell–cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in whichVibriocells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically “locked” at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating mutations inmetF(methylenetetrahydrofolate reductase) andluxR(the master QS transcriptional regulator). In mixed cultures, QS mutant strains initially coexist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links nutrient availability and cell density, preventing accumulation of QS-defective mutants. 
    more » « less