skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stakeholder Preference Extraction From Scenarios
Companies use personalization to tailor user experiences. Personalization appears in search engines and online stores, which include salutations and statistically learned correlations over search-, browsing- and purchase-histories. However, users have a wider variety of substantive, domain-specific preferences that affect their choices when they use directory services, and these have largely been overlooked or ignored. The contributions of this paper include: (1) a grounded theory describing how stakeholder preferences are expressed in text scenarios; (2) an app feature survey to assess whether elicited preferences represent missing requirements in existing systems; (3) an evaluation of three classifiers to label preference words in scenarios; and (4) a linker to build preference phrases by linking labeled preference words to each other based on word position. In this study, the authors analyzed 217 elicited directory service scenarios across 12 domain categories to yield a total of 7,661 stakeholder preferences labels. The app survey yielded 43 stakeholder preferences that were missed on average 49.7% by 15 directory service websites studied. The BERT-based transformer showed the best average overall 81.1% precision, 84.4% recall and 82.6% F1-score when tested on unseen domains. Finally, the preference linker correctly links preference phrases with 90.1% accuracy. Given these results, we believe directory service developers can use this approach to automatically identify user preferences to improve service designs.  more » « less
Award ID(s):
2007298 2217572
PAR ID:
10561329
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Software Engineering
Volume:
50
Issue:
1
ISSN:
0098-5589
Page Range / eLocation ID:
69 to 84
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many decision-making scenarios, e.g., public policy, healthcare, business, and disaster response, require accommodating the preferences of multiple stakeholders. We offer the first formal treatment of reasoning with multi-stakeholder qualitative preferences in a setting where stakeholders express their preferences in a qualitative preference language, e.g., CP-net, CI-net, TCP-net, CP-Theory. We introduce a query language for expressing queries against such preferences over sets of outcomes that satisfy specified criteria, e.g., ψ1PAψ2 (read loosely as the set of outcomes satisfying ψ1 that are preferred over outcomes satisfying ψ2 by a set of stakeholders A). Motivated by practical application scenarios, we introduce and analyze several alternative semantics for such queries, and examine their interrelationships. We provide a provably correct algorithm for answering multi-stakeholder qualitative preference queries using model checking in alternation-free μ-calculus. We present experimental results that demonstrate the feasibility of our approach. 
    more » « less
  2. To scale the Internet of Things (IoT) beyond a single home or enterprise, we need an effective mechanism to manage the growth of data, facilitate resource discovery and name resolution, encourage data sharing, and foster cross-domain services. To address these needs, we propose a GlObaL Directory for Internet of Everything (GOLDIE). GOLDIE is a hierarchical location-based IoT directory architecture featuring diverse user-oriented modules and federated identity management. IoT-specific features include discoverability, aggregation and geospatial queries, and support for global access. We implement and evaluate the prototype on a Raspberry Pi and Intel mini servers. We show that a global implementation of GOLDIE could decrease service access latency by 87% compared to a centralized-server solution. 
    more » « less
  3. One longstanding complication with Earth data discovery involves understanding a user’s search intent from the input query. Most of the geospatial data portals use keyword-based match to search data. Little attention has focused on the spatial and temporal information from a query or understanding the query with ontology. No research in the geospatial domain has investigated user queries in a systematic way. Here, we propose a query understanding framework and apply it to fill the gap by better interpreting a user’s search intent for Earth data search engines and adopting knowledge that was mined from metadata and user query logs. The proposed query understanding tool contains four components: spatial and temporal parsing; concept recognition; Named Entity Recognition (NER); and, semantic query expansion. Spatial and temporal parsing detects the spatial bounding box and temporal range from a query. Concept recognition isolates clauses from free text and provides the search engine phrases instead of a list of words. Name entity recognition detects entities from the query, which inform the search engine to query the entities detected. The semantic query expansion module expands the original query by adding synonyms and acronyms to phrases in the query that was discovered from Web usage data and metadata. The four modules interact to parse a user’s query from multiple perspectives, with the goal of understanding the consumer’s quest intent for data. As a proof-of-concept, the framework is applied to oceanographic data discovery. It is demonstrated that the proposed framework accurately captures a user’s intent. 
    more » « less
  4. We propose and implement Directory-Based Access Control (DBAC), a flexible and systematic access control approach for geographically distributed multi-administration IoT systems. DBAC designs and relies on a particular module, IoT directory, to store device metadata, manage federated identities, and assist with cross-domain authorization. The directory service decouples IoT access into two phases: discover device information from directories and operate devices through discovered interfaces. DBAC extends attribute-based authorization and retrieves diverse attributes of users, devices, and environments from multi-faceted sources via standard methods, while user privacy is protected. To support resource-constrained devices, DBAC assigns a capability token to each authorized user, and devices only validate tokens to process a request. 
    more » « less
  5. Abstract This research presents an adaptive and personalized routing model that enables individuals with mobility impairments to save their route preferences to a mobility assistant platform. The proactive approach based on anticipated user need accommodates vulnerable road users' personalized optimum dynamic routing rather than a reactive approach passively awaiting input. Most currently available trip planners target the general public's use of simpler route options prioritized based on static road characteristics. These static normative approaches are only satisfactory when conditions of intermediate intersections in the network are consistent, a constant rate of change occurs per each change of the segment condition, and the same fixed routes are valid every day regardless of the user preference. In this study, the vulnerable road user mobility problem is modeled by accommodating personalized preferences changing by time, sidewalk segment traversability, and the interaction between sidewalk factors and weather conditions for each segment contributing to a path choice. The developed reinforcement learning solution presents a lower average cost of personalized, accessible, and optimal path choices in various trip scenarios and superior to traditional shortest path algorithms (e.g., Dijkstra) with static and dynamic extensions. 
    more » « less