skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fire refugia are robust across Western US forested ecoregions, 1986–2021
Abstract In the Western US, area burned and fire size have increased due to the influences of climate change, long-term fire suppression leading to higher fuel loads, and increased ignitions. However, evidence is less conclusive about increases in fire severity within these growing wildfire extents. Fires burn unevenly across landscapes, leaving islands of unburned or less impacted areas, known as fire refugia. Fire refugia may enhance post-fire ecosystem function and biodiversity by providing refuge to species and functioning as seed sources after fires. In this study, we evaluated whether the proportion and pattern of fire refugia within fire events have changed over time and across ecoregions. To do so, we processed all available Landsat 4–9 satellite imagery to identify fire refugia within the boundaries of large wildfires (405 ha+) in 16 forested ecoregions of the Western US. We found a significant change in % refugia from 1986–2021 only in one ecoregion—% refugia increased within fires in the Arizona/New Mexico Mountain ecoregion (AZ/NM). Excluding AZ/NM, we found no significant change in % refugia across the study area. Furthermore, we found no significant change in mean refugia patch size, patch density, or mean distance to refugia. As fire size increased, the amount of refugia increased proportionally. Evidence suggests that fires in AZ/NM had a higher proportion of reburns and, unlike the 15 other ecoregions, fires did not occur at higher elevation or within greener areas. We suggest several possibilities for why, with the exception of AZ/NM, ecoregions did not experience a significant change in the proportion and pattern of refugia. In summary, while area burned has increased over the past four decades, there are substantial and consistent patterns of refugia that could support post-fire recovery dependent on their spatial patterns and ability to function as seeds sources for neighboring burned patches.  more » « less
Award ID(s):
2017889
PAR ID:
10561390
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
1
ISSN:
1748-9326
Page Range / eLocation ID:
014044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extreme single-day fire spread events are associated with warmer and drier fire seasons and are expected to increase in the future. However, our understanding of the post-fire landscape outcomes of such events is limited. Here, we ask whether extreme events burn more severely or produce landscape patterns that are less conducive to forest recovery. To identify extreme single-day fire spread events, we used satellite fire detections to create day of burning (DOB) maps for 633 fire events >400 ha within forested ecoregions of the southwestern United States. We categorized daily rates of spread as extreme (top 2.5% of events; >4901 ha/day) and non-extreme (bottom 97.5%, <4901 ha/day). We contrasted satellite-measured burn severity and a suite of high severity patch landscape metrics between extreme and non-extreme spread events. We found that extreme single-day fire spread events were associated with increased severity, a greater proportion of area burned severely, and a higher percentage of like adjacencies between high severity pixels. Average distances from high severity patch interiors to edges were also greater in extreme single-day spread events. Additionally, area-weighted mean patch size and total core area of high severity patches were higher for fires containing one or more extreme single-day spread events. Larger and more homogenous high-severity patches produced during extreme events have been shown to limit tree seedling establishment, inhibiting forest recovery and facilitating vegetation type conversion. These landscape outcomes are expected to be magnified under future climate as extreme fire spread becomes more prevalent, accelerating fire-driven forest loss across the southwestern US. 
    more » « less
  2. Abstract Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high‐resolution satellite imagery (5‐m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to explore the influence of burn severity, topography, soils, and climate moisture deficit on delayed mortality. We estimate that delayed mortality reduced live conifer tree cover by 5%–25% at the fire perimeter scale and 12%–15% at the ecoregion scale. Remotely sensed burn severity (1‐year postfire) was the strongest predictor of delayed mortality, indicating patch‐level fire effects are a strong proxy for fire injury severity among surviving trees that eventually perish. Delayed mortality rates were further influenced by long‐term average and short‐term postfire climate moisture deficits, illustrating the impact of drought on fire‐injured tree survival. Our work demonstrates that delayed mortality in conifer forests of the western United States can be remotely quantified at a fine grain and landscape scale, is a spatially extensive phenomenon, is driven by fire–climate–environment interactions, and has important ecological implications. 
    more » « less
  3. Abstract. The snow cover extent across the Northern Hemisphere has diminished, while the number of lightning ignitions and amount of burned area have increased over the last 5 decades with accelerated warming. However, the effects of earlier snow disappearance on fire are largely unknown. Here, we assessed the influence of snow disappearance timing on fire ignitions across 16 ecoregions of boreal North America. We found spatially divergent trends in earlier (later) snow disappearance, which led to an increasing (decreasing) number of ignitions for the northwestern (southeastern) ecoregions between 1980 and 2019. Similar northwest–southeast divergent trends were observed in the changing length of the snow-free season and correspondingly the fire season length. We observed increases (decreases) over northwestern (southeastern) boreal North America which coincided with a continental dipole in air temperature changes between 2001 and 2019. Earlier snow disappearance induced earlier ignitions of between 0.22 and 1.43 d earlier per day of earlier snow disappearance in all ecoregions between 2001 and 2019. Early-season ignitions (defined by the 20 % earliest fire ignitions per year) developed into significantly larger fires in 8 out of 16 ecoregions, being on average 77 % larger across the whole domain. Using a piecewise structural equation model, we found that earlier snow disappearance is a good direct proxy for earlier ignitions but may also result in a cascade of effects from earlier desiccation of fuels and favorable weather conditions that lead to earlier ignitions. This indicates that snow disappearance timing is an important trigger of land–atmosphere dynamics. Future warming and consequent changes in snow disappearance timing may contribute to further increases in western boreal fires, while it remains unclear how the number and timing of fire ignitions in eastern boreal North America may change with climate change. 
    more » « less
  4. Infrequent stand-replacing wildfires are characteristic of mesic and/or cool conifer forests in western North America, where forest recovery within high-severity burn patch interiors can be slow, yet successful over long temporal periods (decades to centuries). Increasing fire frequency and high-severity burn patch size, under a warming climate, however, may challenge post-fire forest recovery, promoting landscape-level shifts in forest structure, composition, and distribution of non-forest patches. Crucial to a delay and/or impediment to this shift, fire refugia (i.e., remnant seed sources) may determine forest recovery trajectories and potential forest state-transitions. To examine how fire refugia attributes (i.e. extent, composition, and structure) interact with local climate and environmental conditions to determine post-fire forest recovery responses, we developed fine-grain maps of fire refugia via remote sensing and conducted field-based assessment of post-fire conifer tree establishment largely originating (i.e., dispersed) from fire refugium in the Central Cascade Range of the Pacific Northwest United States. We found that limitations on seed availability, represented by the distance 2 -weighted density (D 2 WD) of fine-grain refugia extent, largely explained post-fire tree establishment responses within our relatively mesic and cool subalpine study sites. Interactions between seed availability, climate, and environmental conditions indicated that the structural attributes of refugia (e.g., tree height) and site abiotic/biotic environmental controls (e.g., climate water deficit, canopy cover, and coarse woody debris cover) interplayed to constrain or enhance species-specific tree establishment responses. Importantly, these interactions illustrate that when seed availability is critically low for a given area, climate-environment conditions may strongly determine whether forests recover following fire(s). Toward modelling and predicting tree establishment responses and potential forest state-transitions after large stand-replacing fires(s), our study demonstrates the importance of accurately quantifying seed availability via the fine-grain extent, configuration, and attributes of remnant seed source legacies. 
    more » « less
  5. Climate change is intensifying fire behavior, with the largest and fastest-spreading fires causing the greatest impacts on people and ecosystems. Yet the mechanisms driving variability and trends in large fires remain poorly understood. Using 12-hour satellite-derived fire tracking data from 2012 to 2023, we show that the merging of separate ignitions into multi-ignition complexes is a key process amplifying fire size and destructive potential across temperate and boreal ecoregions. Multi-ignition fires account for 31% of the burned area in California and 59% in the Arctic-boreal domain, spread faster and persist longer than single-ignition fires, and disproportionately contribute to extreme fire years in California, Canada, and Siberia. They also generate stronger atmospheric feedbacks, produce more pyrocumulonimbus events, and strain firefighting capacity by dispersing suppression resources. Recognizing and accounting for fire-merging dynamics are critical for improving wildfire prediction, risk assessment, and management. 
    more » « less