Abstract The production of a pair of τ leptons via photon–photon fusion, , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of is . Constraints are set on the contributions to the anomalous magnetic moment ( ) and electric dipole moments ( ) of the τ lepton originating from potential effects of new physics on the vertex: and (95% confidence level), consistent with the standard model.
more »
« less
This content will become publicly available on October 29, 2025
Convolution identities for divisor sums and modular forms
We consider certain convolution sums that are the subject of a conjecture by Chester, Green, Pufu, Wang, and Wen in string theory. We prove a generalized form of their conjecture, explicitly evaluating absolutely convergent sums where is a Laurent polynomial with logarithms. Contrary to original expectations, such convolution sums, suitably extended to , do not vanish, but instead, they carry number theoretic meaning in the form of Fourier coefficients of holomorphic cusp forms.
more »
« less
- Award ID(s):
- 2001909
- PAR ID:
- 10561401
- Editor(s):
- Ribet, Kenneth
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 44
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We analyze four epochs of Hubble Space Telescope imaging over 18 yr for the Draco dwarf spheroidal galaxy. We measure precise proper motions for hundreds of stars and combine these with existing line-of-sight (LOS) velocities. This provides the first radially resolved 3D velocity dispersion profiles for any dwarf galaxy. These constrain the intrinsic velocity anisotropy and resolve the mass–anisotropy degeneracy. We solve the Jeans equations in oblate axisymmetric geometry to infer the mass profile. We find the velocity dispersion to be radially anisotropic along the symmetry axis and tangentially anisotropic in the equatorial plane, with a globally averaged value , (where 1 – in 3D). The logarithmic dark matter (DM) density slope over the observed radial range, Γdark, is , consistent with the inner cusp predicted in ΛCDM cosmology. As expected given Draco’s low mass and ancient star formation history, it does not appear to have been dissolved by baryonic processes. We rule out cores larger than 487, 717, and 942 pc at 1σ, 2σ, and 3σconfidence, respectively, thus imposing important constraints on the self-interacting DM cross section. Spherical models yield biased estimates for both the velocity anisotropy and the inferred slope. The circular velocity at our outermost data point (900 pc) is . We infer a dynamical distance of kpc and show that Draco has a modest LOS rotation, with . Our results provide a new stringent test of the so-called “cusp–core” problem that can be readily extended to other dwarfs.more » « less
-
Abstract The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the followinga prioriunstable Hamiltonian system with a time-periodic perturbation where , withn,d⩾ 1,Viare Morse potentials, andɛis a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH1. Indeed, the set of admissibleH1isCωdense andC3open (a fortiori,Cωopen). Our perturbative technique for the genericity is valid in theCktopology for allk∈ [3, ∞) ∪ {∞,ω}.more » « less
-
We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO :7%Y from the mixed monoclinic ( ) antipolar orthorhombic ( ) phase to pure antipolar orthorhombic ( ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the metastable state at 300 K. Compression also drives polar orthorhombic ( ) hafnia into the tetragonal ( ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO .more » « less
-
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less