Abstract Minimizing and understanding errors is critical for quantum science, both in noisy intermediate scale quantum (NISQ) devices1and for the quest towards fault-tolerant quantum computation2,3. Rydberg arrays have emerged as a prominent platform in this context4with impressive system sizes5,6and proposals suggesting how error-correction thresholds could be significantly improved by detecting leakage errors with single-atom resolution7,8, a form of erasure error conversion9–12. However, two-qubit entanglement fidelities in Rydberg atom arrays13,14have lagged behind competitors15,16and this type of erasure conversion is yet to be realized for matter-based qubits in general. Here we demonstrate both erasure conversion and high-fidelity Bell state generation using a Rydberg quantum simulator5,6,17,18. When excising data with erasure errors observed via fast imaging of alkaline-earth atoms19–22, we achieve a Bell state fidelity of$$\ge 0.997{1}_{-13}^{+10}$$ , which improves to$$\ge 0.998{5}_{-12}^{+7}$$ when correcting for remaining state-preparation errors. We further apply erasure conversion in a quantum simulation experiment for quasi-adiabatic preparation of long-range order across a quantum phase transition, and reveal the otherwise hidden impact of these errors on the simulation outcome. Our work demonstrates the capability for Rydberg-based entanglement to reach fidelities in the 0.999 regime, with higher fidelities a question of technical improvements, and shows how erasure conversion can be utilized in NISQ devices. These techniques could be translated directly to quantum-error-correction codes with the addition of long-lived qubits7,22–24. 
                        more » 
                        « less   
                    
                            
                            Erasure conversion in a high-fidelity Rydberg quantum simulator
                        
                    
    
            Minimizing and understanding errors is critical for quantum science, both in noisy intermediate scale quantum (NISQ) devices1 and for the quest towards fault-tolerant quantum computation2,3. Rydberg arrays have emerged as a prominent platform in this context4 with impressive system sizes5,6 and proposals suggesting how error-correction thresholds could be significantly improved by detecting leakage errors with single-atom resolution7,8, a form of erasure error conversion9,10,11,12. However, two-qubit entanglement fidelities in Rydberg atom arrays13,14 have lagged behind competitors15,16 and this type of erasure conversion is yet to be realized for matter-based qubits in general. Here we demonstrate both erasure conversion and high-fidelity Bell state generation using a Rydberg quantum simulator5,6,17,18. When excising data with erasure errors observed via fast imaging of alkaline-earth atoms19,20,21,22, we achieve a Bell state fidelity of ≥0.9971−13+10, which improves to ≥0.9985−12+7 when correcting for remaining state-preparation errors. We further apply erasure conversion in a quantum simulation experiment for quasi-adiabatic preparation of long-range order across a quantum phase transition, and reveal the otherwise hidden impact of these errors on the simulation outcome. Our work demonstrates the capability for Rydberg-based entanglement to reach fidelities in the 0.999 regime, with higher fidelities a question of technical improvements, and shows how erasure conversion can be utilized in NISQ devices. These techniques could be translated directly to quantum-error-correction codes with the addition of long-lived qubits7,22,23,24. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1753386
- PAR ID:
- 10561435
- Publisher / Repository:
- Nature Physics
- Date Published:
- Journal Name:
- Nature
- ISSN:
- 1038 41586
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The development of scalable, high-fidelity qubits is a key challenge in quantum information science. Neutral atom qubits have progressed rapidly in recent years, demonstrating programmable processors1,2 and quantum simulators with scaling to hundreds of atoms3,4. Exploring new atomic species, such as alkaline earth atoms5,6,7, or combining multiple species8 can provide new paths to improving coherence, control and scalability. For example, for eventual application in quantum error correction, it is advantageous to realize qubits with structured error models, such as biased Pauli errors9 or conversion of errors into detectable erasures10. Here we demonstrate a new neutral atom qubit using the nuclear spin of a long-lived metastable state in 171Yb. The long coherence time and fast excitation to the Rydberg state allow one- and two-qubit gates with fidelities of 0.9990(1) and 0.980(1), respectively. Importantly, a large fraction of all gate errors result in decays out of the qubit subspace to the ground state. By performing fast, mid-circuit detection of these errors, we convert them into erasure errors; during detection, the induced error probability on qubits remaining in the computational space is less than 10−5. This work establishes metastable 171Yb as a promising platform for realizing fault-tolerant quantum computing.more » « less
- 
            Programmable optical tweezer arrays of molecules are an emerging platform for quantum simulation and quantum information science. For these applications, the reduction and mitigation of errors remain major challenges. In this work, we leverage the rich internal structure of molecules to mitigate two types of errors - internal state preparation and qubit leakage errors. First, we demonstrate robust measurement-enhanced tweezer preparation at a record fidelity using site-resolved error detection followed by tweezer movement. Second, using a new hyperfine qubit encoding well-suited for use as a quantum memory, we demonstrate site-resolved detection of qubit leakage errors (erasures) induced by blackbody radiation. This constitutes the first demonstration of erasure conversion in molecules, a capability that has found recent interest in quantum error correction. Our work opens the door to new possibilities with molecular tweezer arrays: Measurement-enhanced preparation opens access to mesoscopic defect-free molecular arrays that are important for quantum simulation of interacting many-body systems; erasure conversion in molecular arrays lays the technical ground- work for mid-circuit detection, an important capability for explorations in quantum information processing.more » « less
- 
            Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here, we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations and two-atom entanglement that surpass previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom–ion systems, and set the stage for alkaline-earth based quantum computing architectures.more » « less
- 
            We demonstrate high fidelity two-qubit Rydberg blockade and entanglement in a two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods have increased the observed Bell state fidelity to FBell = 0.86(2). Accounting for errors in state preparation and measurement (SPAM) we infer a fidelity of F−SPAM Bell = 0.89. Including errors in single qubit operations we infer that the Rydberg mediated CZ gate has a fidelity of F−SPAM CZ= 0.91. Comparison with a detailed error model shows that further improvement in fidelity will require colder atoms and lasers with reduced noise.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    