Ten new ruthenium compounds based on the N,N,N,N-chelate Me2bpbMe2 (bpb = 1,2-bis(pyridine-2-carboximido)benzene) have prepared and characterized by 1H NMR and IR spectroscopy. The monocarbonyl compound (Me2bpbMe2)Ru(CO)(H2O) compound was generated from the reaction of the free base Me2bpbMe2H2 with Ru3(CO)12 in refluxing DMF. Isoamyl nitrite reacts with this compound to yield the trans-addition nitrosyl alkoxide (Me2bpbMe2)Ru(NO)(O-i-C5H11). Nitrosothiols similarly add in a formal trans-addition manner to yield (Me2bpbMe2)Ru(NO)(SR/Ar) (SR/Ar = S-i-C5H11, SPh, SC6F4H, SC(Me)2CHNHC(O)Me) derivatives. The (Me2bpbMe2)Ru(NO)(O-i-C5H11) compound undergoes alkoxide exchange reactions with PhOH and HOC6F4H to generate (Me2bpbMe2)Ru(NO)(OPh) and (Me2bpbMe2)Ru(NO)(OC6F4H), respectively. The neutral alkoxide/aryloxide nitrosyl compounds exhibit higher NO bands (1809–1842 cm-1) relative to their thiolate analogues (1755–1823 cm-1). The X-ray crystal structures of (Me2bpbMe2)Ru(NO)(OPh), (Me2bpbMe2)Ru(NO)(OC6F4H), and (Me2bpbMe2)Ru(NO)(SPh), have been determined, and reveal linear axial (O)N–Ru–O/S linkages consistent with trans positioning of the NO and aryloxide and -thiolate groups, and near-linear Ru–N–O moieties (164–174°) consistent with these complexes being formulated as {RuNO}6 species. The electrooxidation behavior of (Me2bpbMe2)Ru(NO)(OC6F4H), (Me2bpbMe2)Ru(NO)(SC6F4H), and (Me2bpbMe2)Ru(NO)(SPh) were examined by cyclic voltammetry and IR spectroelectrochemistry in CH2Cl2. (Me2bpbMe2)Ru(NO)(OC6F4H) and (Me2bpbMe2)Ru(NO)(SC6F4H) display reversible first oxidations, whereas (Me2bpbMe2)Ru(NO)(SPh) displays an irreversible first oxidation with likely loss of the thiolate ligand. Chemical reactivity of (Me2bpbMe2)Ru(NO)(SPh) with H+ and Me+ results in the generation of the free thiol PhSH and thioether PhSMe, respectively.
more »
« less
Ruthenium Nitrosyl Porphyrins Coordinated with Aryloxides Containing Internal Hydrogen Bonds
The synthesis, characterization, and redox behavior of aryloxide complexes containing an increasing number of internal hydrogen bonds (OEP)Ru(NO)(OArxH) (OEP = octaethylporphyrinato dianion; x = 0, 1, 2) are reported. These nitrosyl aryloxide compounds were characterized by X‐ray crystallography, IR and 1H NMR spectroscopy. The IR spectra displayed uNO frequencies in the 1823–1843 cm‐1 range with compounds possessing more internal hydrogen bonds demonstrating higher uNO frequencies due to diminished π‐backdonation to the Ru‐NO fragment. Comparison of the distinct uNH and δN‐H signals in the IR and 1H NMR spectra of the free and complexed OAr1H/OAr2H ligands support the notion of additional electron density being removed via intramolecular hydrogen bonding. Results of DFT calculations on the (porphine)Ru(NO)(OArxH) models (porphine = unsubstituted porphyrin) reveal that the HOMOs of these complexes have significant axial ligand contributions, whereas the HOMOs of the five‐coordinate [(porphine)RuNO)]+ cation resides mostly on the equatorial porphyrin macrocycle. The electrochemical results of these (OEP)Ru(NO)(OArxH) complexes in CH2Cl2 reveal first oxidations that occur at increasingly positive potentials when more internal hydrogen bonds are present. Based on the DFT and preliminary IR spectroelectrochemical results, we propose that the electrooxidations result in eventual dissociation of the axial aryloxide ligands.
more »
« less
- Award ID(s):
- 2154603
- PAR ID:
- 10561437
- Publisher / Repository:
- Wiley-VCH
- Date Published:
- Journal Name:
- European Journal of Inorganic Chemistry
- ISSN:
- 1434-1948
- Subject(s) / Keyword(s):
- porphyrinoids nitrogen oxides infrared spectroelectrochemistry transition metals cyclic voltammetry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In exploring the conformational behavior of cyclic tungsten bis-alkyne complexes, two dialkynylamides (14a and 14c) and two dialkynylesters (14b and 14d) derived from 1,1’-ferrocenedicarboxylic acid were prepared. They were subsequently reacted with W(CO)3(dmtc)2 to yield the desired cyclic tungsten bis-alkyne complexes 8-11. In the cyclization of 14a to yield 8 a dimeric macrocyclic complex, 15, featuring two tungsten bis-alkyne complexes in the ring, also was isolated. The conformational behavior of these complexes was assessed by analysis of the 1H NMR resonances for the alkyne hydrogens, which appear around 11 ppm. The spectra for complexes 10, 11 and 15 show multiple singlets of varying integrations for these protons, while the spectra for complexes 8 and 9 show only two resonances of equal integration for the alkyne hydrogens. The spectra for 8 and 9 changed very little when examined at higher temperatures, indicating that the solution conformation is robust. A ROESY spectrum was obtained for 8. It did not show any crosspeaks between the two alkyne hydrogens. The NMR data shows that the alkyne ligands in 10, 11 and 15 are able to rotate about the tungsten-alkyne bond; these complexes adopted several different solution conformations relating to syn and anti arrangements of the alkyne ligands. In contrast, complexes 8 and 9 adopt only one solution conformation, and the alkyne ligands in these species do not rotate about the tungsten-alkyne bond. The NMR spectra for 8 and 9 also show that these complexes are asymmetric. The 1H NMR spectra for 8 and 9 show that each hydrogen atom has its own unique resonance in the 1H NMR spectrum. There are 8 resonances for the 8 Cp protons, 4 resonances for the methylene protons, 2 resonances for the alkyne protons, and in the case of 8, 2 resonances for the NH protons. The two NH protons on complex 8 were found to have widely different chemical shifts. A DMSO titration was performed and it showed that one of the two NH protons in 8 is involved in an intramolecular hydrogen bond. Given that the diester 9 adopts a similar conformation as the diamide 8, this intramolecular hydrogen bond appears to result from the conformation imposed by cyclization of the ring system. Overall, the data show that the ring system for 8 and 9 provides a unique, rigid, robust, and air stable cyclic molecule where the alkyne ligands are limited to one orientation, presumably the syn orientation. The lack of mobility for the alkyne ligands limits the cyclic molecule to only one solution conformation. Complexes 8 and 9 are the first reported examples of cyclic tungsten bis-alkyne complexes that only adopt a single, robust conformation in solution.more » « less
-
Investigations into the reactivity, properties, and applications of osmium(IV) tetraaryl complexes have been hampered by their low yielding syntheses from volatile and toxic OsO4 (typically ≤34%). Here we show that known air-stable M(aryl)4 compounds (M = Os, Ru; aryl = 2-tolyl, 2,5-xylyl) can be prepared in ≤73% yields using new, less hazardous (Oct4N)2[MX6] precursors (M = Os, Ru; X = Cl, Br). This approach also facilitates the preparation of Os(mesityl)4 (Os3) for the first time, a complex comprising bulky 2,6-dimethyl substituted aryl ligands, albeit in low yield (5%). To better understand these yield extremes, we track, by synthesizing two additional new complexes with different 2-substituted σ-aryl ligands, a clear relationship between the yields of Os(aryl)4 and ligand steric bulk. Single-crystal X-ray structures of these compounds indicate that the observed yield trend reflects the ease of accommodating aryl substituents into an open pocket that lies directly opposite each M-aryl coordination site. We perform variable-temperature 1H NMR studies of Os3, utilize a "tetrahedricity" metric to assess geometric distortion in Ru(aryl)4 and Os(aryl)4 materials, and calculate cone angle and percentage buried volume metrics to further illustrate and help quantify -aryl ligand steric properties. Solution cyclic voltammograms of Os(aryl)4 show that the potentials of their reversible 1−/0 and 0/1+ redox features can be fine-tuned by varying aryl substituents, and that Os3 exhibits an additional 1+/2+ redox event not previously observed in this class of compounds. Taken together, this work helps to advance the potential application of these relatively underexplored organometallic complexes in established and emerging areas of molecular materials science, such as extended molecular frameworks and self-assembled monolayers, where analogous tetraphenylmethane and silane species (M = C, Si) have been frequently targeted.more » « less
-
null (Ed.)Tetradentate N2S2 ligands (such as bismercaptoethanediazacycloheptane in this study) have seen extensive use in combination with transition metals. Well-oriented N2S2 binding sites are ideal for d8 transition metals with square planar preferences, especially NiII, but also as a square pyramidal base for those metals with pentacoordinate preferences, such as [V≡O]2+, [Fe(NO)]2+, and [Co(NO)]2+. Further reactivity at the thiolate sulfurs generates diverse bi, tri, and tetra/heterometallic compounds. Few N2S2 ligands have been explored to investigate the possibility of binding to main group metals, especially group III (MIII) metals, and their utility as synthons for main group/transition metal bimetallic complexes. To open up this area of chemistry, we synthesized three new five-coordinate main group XMN2S2 complexes with methyl as the fifth binding ligand for M = Al, and chloride for M = Ga and In. The seven-membered diazacycle, dach, was engaged as a rigid stabilized connector between the terminal thiolate sulfurs. The pentacoordinate XMN2S2 complexes were characterized by 1H-NMR, 13C-NMR, +ESI-Mass spectra, and X-ray diffraction. Their stabilities and reactivities were probed by adding NiII sources and W(CO)5(THF). The former replaces the main group metals in all cases in the N2S2 coordination environment, demonstrating the weak coordinate bonds of MIII–N/S. The reaction of XMN2S2 (XM = ClGaIII or ClInIII) with the labile ligand W(0) complex W(CO)5(THF) resulted in Ga/In–W bimetallic complexes with a thiolate S-bridge. The synthesis of XMN2S2 complexes provide examples of MIII–S coordination, especially Al–S, which is relatively rare. The bimetallic Ga/In–S–W complex formation indicates that the nucleophilic ability of sulfur is retained in MIII–S–R, resulting in the ability of main group MIII–N2S2 complexes to serve as metalloligands.more » « less
-
Metal ligand cooperativity (MLC) has revealed a plethora of unusual reactivity in catalysis in the last couple of decades. Since Milstein's report of aromatization-dearomatization of the pincer backbone of pyridine-based-pincer complexes, ruthenium has played a partic ularly important role in the develo pment of M LC. We have recently reported a (H- P3 )Ir complex which is the fastest known catalyst for alkane-transfer dehydrogenation. The active species results from P- to-Ir migration of H in this system. We further explored the possib ility of MLC in an analogous Ru system. Surprisingly, when metalating the same H-P3 ligand with a RuCl2 precursor we only isolated a (Cl-P3 )Ru(H)Cl complex where H had migrated to Ru from P, and Cl to P from Ru ("P- H/M-X exchange"). We have demonstrated that the thermodynamically favored direction of such exchanges depends strongly on the ancillary ligands, with particular driving force for formation of 5-coordinate (pincer)MHCl complexes (M = d6 metal center) . However, for 6- coordinate Ru complexes (H- pincer)MXYL, the electronic nature of L appears to determine if P-H/M-X exchange occurs. Strongly pi-accepting ligands promote P-X/M-H exchange with the reaction observed for L = CO, xylylisonitrile and N O+ , but not for L = N2 , C H3 CN, or PMe3 . While exchange at 5- coordinate (16e- ) Ru centers appears to proceed through initial P-to-Ru migration of X or H, to give a phosphide interme diate, in the case of 6- coordinate (18e- ) Ru centers exchange is believed to proceed through phosphoranyl intermediates. DFT and intrinsic bond orbital anal. has been used to better understand this reactivity.more » « less
An official website of the United States government

