skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alignment of a Ritchey-Chrétien telescope with primary mirror figure error guided by the rapid measurement of binodal astigmatism
Nodal aberration theory (NAT) is a vectorized aberration theory that was developed to describe systems without rotational symmetry. NAT predicts non-rotationally symmetric aberration field dependences for third-order astigmatism and in particular a “binodal” behavior in which there are two points in the field of view where astigmatism vanishes. This study serves to demonstrate an alignment technique based on an understanding of this binodal behavior using a custom Ritchey-Chretien telescope. A method involving a commercial Shack-Hartmann compact-format wavefront sensor was developed to rapidly measure densely sampled full-field displays of the telescope, which has its secondary mirror mounted on a precision hexapod to allow for repeatable control of the telescope alignment. Real ray-based simulations were carried out on a model of the telescope and were consistent with the observed experimental results for both aligned and misaligned states of the telescope. We then provide guidelines on how to interpret Fringe Zernike astigmatism full-field displays for use during optical system alignment. This method is particularly relevant for freeform systems, which often have asymmetric field dependencies for multiple aberration types including astigmatism.  more » « less
Award ID(s):
1822049 2310640
PAR ID:
10561444
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
27
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 48525
Size(s):
Article No. 48525
Sponsoring Org:
National Science Foundation
More Like this
  1. Nodal Aberration Theory (NAT) was developed to explain the field dependency of aberration field centers in the image plane of nominally rotationally symmetric optical systems that have lost their symmetry through misalignments. A new insight into the theory led to calculating the sigma vectors, which locate the aberration field centers, using the angle between a real-ray trace of the optical axis ray (OAR) and the normal of the local surface where “local” refers to the object and image optical spaces of that surface. Here, we detail the sigma vector calculations for general optical systems and provide an experimental investigation of a misaligned system with a high-precision customized Cassegrain telescope. In the simulations, a Newtonian telescope, a Cassegrain telescope, and a three-mirror anastigmat telescope were misaligned intentionally in ray-tracing software. The sigma vectors were calculated analytically for the third-order aberrations of astigmatism and coma. Experimentally, the same perturbations were implemented for the Cassegrain telescope system, and the aberrations were quantified through interferometric measurements on a grid of field points in the image plane that verified the analytical derivation and simulations. 
    more » « less
  2. Blur occurs naturally when the eye is focused at one distance and an object is presented at another distance. Computer-graphics engineers and vision scientists often wish to create display images that reproduce such depth-dependent blur, but their methods are incorrect for that purpose. They take into account the scene geometry, pupil size, and focal distances, but do not properly take into account the optical aberrations of the human eye. We developed a method that, by incorporating the viewer’s optics, yields displayed images that produce retinal images close to the ones that occur in natural viewing. We concentrated on the effects of defocus, chromatic aberration, astigmatism, and spherical aberration and evaluated their effectiveness by conducting experiments in which we attempted to drive the eye’s focusing response (accommodation) through the rendering of these aberrations. We found that accommodation is not driven at all by conventional rendering methods, but that it is driven surprisingly quickly and accurately by our method with defocus and chromatic aberration incorporated. We found some effect of astigmatism but none of spherical aberration. We discuss how the rendering approach can be used in vision science experiments and in the development of ophthalmic/optometric devices and augmented- and virtual-reality displays. 
    more » « less
  3. Optical coherence microscopy (OCM) uses interferometric detection to capture the complex optical field with high sensitivity, which enables computational wavefront retrieval using back-scattered light from the sample. Compared to a conventional wavefront sensor, aberration sensing with OCM via computational adaptive optics (CAO) leverages coherence and confocal gating to obtain signals from the focus with less cross-talk from other depths or transverse locations within the field-of-view. Here, we present an investigation of the performance of CAO-based aberration sensing in simulation, bead phantoms, andex vivomouse brain tissue. We demonstrate that, due to the influence of the double-pass confocal OCM imaging geometry on the shape of computed pupil functions, computational sensing of high-order aberrations can suffer from signal attenuation in certain spatial-frequency bands and shape similarity with lower order counterparts. However, by sensing and correcting only low-order aberrations (astigmatism, coma, and trefoil), we still successfully corrected tissue-induced aberrations, leading to 3× increase in OCM signal intensity at a depth of ∼0.9 mm in a freshly dissectedex vivomouse brain. 
    more » « less
  4. Liquid–liquid phase separation (LLPS) in macromolecular solutions (e.g., coacervation) is relevant both to technology and to the process of mesoscale structure formation in cells. The LLPS process is characterized by a phase diagram, i.e., binodal lines in the temperature/concentration plane, which must be quantified to predict the system’s behavior. Experimentally, this can be difficult due to complications in handling the dense macromolecular phase. Here, we develop a method for accurately quantifying the phase diagram without direct handling: We confine the sample within micron-scale, water-in-oil emulsion droplets and then use precision fluorescent imaging to measure the volume fraction of the condensate within the droplet. We find that this volume fraction grows linearly with macromolecule concentration; thus, by applying the lever rule, we can directly extract the dense and dilute binodal concentrations. We use this approach to study a model LLPS system of self-assembled, fixed-valence DNA particles termed nanostars (NSs). We find that temperature/concentration phase diagrams of NSs display, with certain exceptions, a larger co-existence regime upon increasing salt or valence, in line with expectations. Aspects of the measured phase behavior validate recent predictions that account for the role of valence in modulating the connectivity of the condensed phase. Generally, our results on NS phase diagrams give fundamental insight into limited-valence phase separation, while the method we have developed will likely be useful in the study of other LLPS systems. 
    more » « less
  5. The phase behavior of polyelectrolyte complexes and coacervates (PECs) at low salt concentrations has been well characterized, but their behavior at concentrations well above the binodal is not well understood. Here, we investigate the phase behavior of stoichiometric poly(styrene sulfonate)/poly(diallyldimethylammonium) mixtures at high salt and high polymer concentrations. Samples were prepared by direct mixing of PSS/PDADMA PECs, water, and salt (KBr). Phase separation was observed at salt concentrations approximately 1 M above the binodal. Characterization by thermogravimetric analysis, FTIR, and NMR revealed that both phases contained significant amounts of polymer, and that the polymer-rich phase was enriched in PSS, while the polymer-poor phase was enriched in PDADMA. These results suggest that high salt concentrations drive salting out of the more hydrophobic polyelectrolyte (PSS), consistent with behavior observed in weak polyelectrolyte systems. Interestingly, at the highest salt and polymer concentrations studied, the polymer-rich phase contained both PSS and PDADMA, suggesting that high salt concentrations can drive salting out of partially-neutralized complexes as well. Characterization of the behavior of PECs in the high concentration limit appears to be a fruitful avenue for deepening fundamental understanding of the molecular-scale factors driving phase separation in these systems. 
    more » « less