skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-Institutional Research Engagement Network (CIREN): Initial Project Goals and Objectives in Support of Training, Mentoring, and Research Facilitation
The Cross-Institutional Research Engagement Network (CIREN) is a collaborative project between the University of Tennessee, Knoxville (UTK) and Arizona State University (ASU). This project’s purpose is to fill critical gaps in the development and retention of cyberinfrastructure (CI) facilitators via training, mentorship, and research engagement. Research engagements include projects at the CI facilitator’s local institution, between CIREN partner institutions, and through NSF’s ACCESS program. This lightning talk will detail the training curriculum and mentorship activities the project has implemented in its first year as well as plans for its future research engagements. Feedback is welcome from the community with respect to project directions, best practices, and challenges experienced in implementing this or similar programs at academic institutions.  more » « less
Award ID(s):
2230106
PAR ID:
10561476
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Computational Science Education
Date Published:
Journal Name:
The Journal of Computational Science Education
Volume:
15
Issue:
1
ISSN:
2153-4136
Page Range / eLocation ID:
57 to 58
Subject(s) / Keyword(s):
Cyberinfrastructure Facilitator Training Mentorship High-Performance Computing Machine Learning Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. T3-CIDERS is a train-the-trainer program to increase the adoption of advanced cyberinfrastructure (CI) and data skills into the fabric of research and education in cybersecurity and cyber-related disciplines. T3-CIDERS trains faculty, researchers, and students as “future trainers” (FTs) with hands-on technical and instructional skills to enable more people to effectively leverage CI in cybersecurity. The program includes a series of technical pre-training modules, a weeklong summer institute, ongoing learning engagements conducted over an academic year; it culminates with the FTs conducting locally tailored CI-infused training events at their respective home institutions. Ultimately, T3-CIDERS aims to build a “CI+cybersecurity” community of practice as the cohort continues to practice and teach CI skills in their teaching and research activities. This paper describes the vision and implementation of T3-CIDERS with the first cohort starting in year 2024. Based on the lessons learned through the in-person cohorts, a fully online program will be developed to expand the reach of T3-CIDERS to a broader audience. T3-CIDERS responds to the need to close the CI and data skill gap to meet the increasing challenges in securing the digital world. 
    more » « less
  2. Advances in the volume, diversity, and complexity of research data and associated workflows requires enhanced capabilities to access, secure, reuse, process, analyze, understand, curate, share, and preserve data. To address this need at the regional level the University of Colorado, Colorado State University, and the University of Utah formed a "Cyberteam" in 2017 to provide cyberinfrastructure (CI) support to researchers at institutions in the Rocky Mountain Advanced Computing Consortium (RMACC) encompassing states across the Intermountain West. The Cyberteam is comprised of CI professionals across the three institutions who collaborate closely, sharing expertise and resources. Since its establishment, the Cyberteam has worked to broaden accessibility and options for computing, storage, and data publishing for RMACC researchers; enhance training on data- and workflow-oriented topics; improve engagement with researchers using CI; and better understand user needs and challenges. One key accomplishment has been the development of a series of focus group and survey instruments to achieve better understanding the CI needs and challenges of researchers across a diverse spectrum of disciplines. This paper provides an overview of the RMACC Cyberteam's objectives, accomplishments, challenges, and future direction. 
    more » « less
  3. As the volume and sophistication of cyber-attacks grow, cybersecurity researchers, engineers and practitioners rely on advanced cyberinfrastructure (CI) techniques like big data and machine learning, as well as advanced CI platforms, e.g., cloud and high-performance computing (HPC) to assess cyber risks, identify and mitigate threats, and achieve defense in depth. There is a training gap where current cybersecurity curricula at many universities do not introduce advanced CI techniques to future cybersecurity workforce. At Old Dominion University (ODU), we are bridging this gap through an innovative training program named DeapSECURE (Data-Enabled Advanced Training Program for Cyber Security Research and Education). We developed six non-degree training modules to expose cybersecurity students to advanced CI platforms and techniques rooted in big data, machine learning, neural networks, and high-performance programming. Each workshop includes a lecture providing the motivation and context for a CI technique, which is then examined during a hands-on session. The modules are delivered through (1) monthly workshops for ODU students, and (2) summer institutes for students from other universities and Research Experiences for Undergraduates participants. Future plan for the training program includes an online continuous learning community as an extension to the workshops, and all learning materials available as open educational resources, which will facilitate widespread adoption, adaptations, and contributions. The project leverages existing partnerships to ensure broad participation and adoption of advanced CI techniques in the cybersecurity community. We employ a rigorous evaluation plan rooted in diverse metrics of success to improve the curriculum and demonstrate its effectiveness. 
    more » « less
  4. Improving the level of success of students from low socioeconomic backgrounds in science, technology, engineering, and mathematics (STEM) disciplines has been a prevailing concern for higher education institutions for many years. To address this challenge, a pilot initiative has been implemented with engineering students at the University of Puerto Rico Mayaguez, a recognized Hispanic-serving institution. Over the past four years, the Program for Engineering Access, Retention, and LIATS Success (PEARLS) has brought in an innovative intervention model that combines elements from socio-cognitive career theories and departure studies to impact students' success. PEARLS has established a comprehensive range of tools and services, including mentorship, professional readiness training, research opportunities, scholarships, and peer mentor activities. These efforts have led to impressive outcomes, including a significant increase in retention and persistence rates, increased graduation rates having quad-fold those observed in the general student population, and an impressive record of engagements in industry, research, and leadership experiences. This paper discusses the program structure and outcomes from five perspectives that include background experiences, the structure of provided services, the results of their execution, the elements of knowledge derived from its application, and the challenges experienced throughout its implementation. 
    more » « less
  5. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed. 
    more » « less