skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Daily mean air temperature data for the North American Great Lakes based on coastal weather stations; 1897-2023 (NCEI Accession 0291722)
This dataset contains a record of daily mean air temperature for each of the U.S. Great Lakes from January 1, 1897 to October 22, 2023. These temperatures were derived using the following method. Daily maximum and minimum air temperature data were obtained from the Global Historical Climatology Network-Daily (GHCNd, Menne, et al. 2012) and the Great Lakes Air Temperature/Degree Day Climatology, 1897-1983 (Assel et al. 1995). Daily air temperature was calculated by taking a simple average of daily maximum and minimum air temperature. Following Cohn et al. (2021), a total of 24 coastal locations along the Great Lakes were selected. These 24 locations had relatively consistent station data records since the 1890s. Each of the selected locations had multiple weather stations in their proximity covering the historical period from 1890s to 2023, representing the weather conditions around the location. For most of the locations, datasets from multiple stations in the proximity of each location were combined to create a continuous data record from the 1890s to 2023. When doing so, data consistency was verified by comparing the data during the period when station datasets overlap. This procedure resulted in almost continuous timeseries, except for a few locations that still had temporal gaps of one to several days. Any temporal data gap less than 10 days in the combined timeseries were filled based on the linear interpolation. This resulted in completely continuous timeseries for all the locations. Average daily air temperature was calculated from by simply making an average of timeseries data from corresponding locations around each lake. This resulted in daily air temperature records for all five Great Lakes (Lake Superior, Lake Huron, Lake Michigan, Lake Erie, and Lake Ontario).  more » « less
Award ID(s):
2319044
PAR ID:
10561531
Author(s) / Creator(s):
; ;
Publisher / Repository:
NOAA National Centers for Environmental Information
Date Published:
Format(s):
Medium: X
Location:
(East Bound Longitude:-75.6; North Bound Latitude:49.12; South Bound Latitude:41.2; West Bound Longitude:-92.5)
Sponsoring Org:
National Science Foundation
More Like this
  1. The phenology of critical biological events in aquatic ecosystems are rapidly shifting due to climate change. Growing variability in phenological cues can increase the likelihood of trophic mismatches, causing recruitment failures in commercially, culturally, and recreationally important fisheries. We tested for changes in spawning phenology of regionally important walleye (Sander vitreus) populations in 194 Midwest US lakes in Minnesota, Michigan, and Wisconsin spanning 1939-2019 to investigate factors influencing walleye phenological responses to climate change and associated climate variability, including ice-off timing, lake physical characteristics, and population stocking history. Data from Wisconsin and Michigan lakes (185 and 5 out of 194 total lakes, respectively) were collected by the Wisconsin Department of Natural Resources (WDNR) and the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) through standardized spring walleye mark-recapture surveys and spring tribal harvest season records. Standardized spring mark-recapture population estimates are performed shortly after ice-off, where following a marking event, a subsequent recapture sampling event is conducted using nighttime electrofishing (typically AC – WDNR, pulsed-DC – GLIFWC) of the entire shoreline including islands for small lakes and index stations for large lakes (Hansen et al. 2015) that is timed to coincide with peak walleye spawning activity (G. Hatzenbeler, WDNR, personal communication; M. Luehring, GLIFWC, personal communication; Beard et al. 1997). Data for four additional Minnesota lakes were collected by the Minnesota Department of Natural Resources (MNDNR) beginning in 1939 during annual collections of walleye eggs and broodstock (Schneider et al. 2010), where date of peak egg take was used to index peak spawning activity. For lakes where spawning location did not match the lake for which the ice-off data was collected, the spawning location either flowed into (Pike River) or was within 50 km of a lake where ice-off data were available (Pine River) and these ice-off data were used. Following the affirmation of off-reservation Ojibwe tribal fishing rights in the Ceded Territories of Wisconsin and the Upper Peninsula of Michigan in 1987, tribal spearfishers have targeted walleye during spring spawning (Mrnak et al. 2018). Nightly harvests are recorded as part of a compulsory creel survey (US Department of the Interior 1991). Using these records, we calculated the date of peak spawning activity in a given lake-year as the day of maximum tribal harvest. Although we were unable to account for varying effort in these data, a preliminary analysis comparing spawning dates estimated using tribal harvest to those determined from standardized agency surveys in the same lake and year showed that they were highly correlated (Pearson’s correlation: r = 0.91, P < 0.001). For lakes that had walleye spawning data from both agency surveys and tribal harvest, we used the data source with the greatest number of observation years. Ice-off phenology data was collected from two sources – either observed from the Global Lake and River Ice Phenology database (Benson et al. 2000)t, or modeled from a USGS region-wide machine-learning model which used North American Land Data Assimilation System (NLDAS) meteorological inputs combined with lake characteristics (lake position, clarity, size, depth, hypsography, etc.) to predict daily water column temperatures from 1979 - 2022, from which ice-off dates could be derived (https://www.sciencebase.gov/catalog/item/6206d3c2d34ec05caca53071; see Corson-Dosch et al. 2023 for details). Modeled data for our study lakes (see (Read et al. 2021) for modeling details), which performed well in reflecting ice phenology when compared to observed data (i.e., highly significant correlation between observed and modeled ice-off dates when both were available; r = 0.71, p < 0.001). Lake surface area (ha), latitude, and maximum depth (m) were acquired from agency databases and lake reports. Lake class was based on a WDNR lakes classification system (Rypel et al. 2019) that categorized lakes based on temperature, water clarity, depth, and fish community. Walleye stocking history was defined using the walleye stocking classification system developed by the Wisconsin Technical Working Group (see also Sass et al. 2021), which categorized lakes based on relative contributions of naturally-produced and stocked fish to adult recruitment by relying heavily on historic records of age-0 and age-1 catch rates and stocking histories. Wisconsin lakes were divided into three groups: natural recruitment (NR), a combination of stocking and natural recruitment (C-ST), and stocked only (ST). Walleye natural recruitment was indexed as age-0 walleye CPE (number of age-0 walleye captured per km of shoreline electrofished) from WDNR and GLIFWC fall electrofishing surveys (see Hansen et al. 2015 for details). We excluded lake-years where stocking of age-0 fish occurred before age-0 surveys to only include measurements of naturally-reproduced fish. 
    more » « less
  2. This is a compilation of total monthly precipitation data in total inches for two NOAA weather stations. The Prairie du Sac station data located at the Prairie du Sac dam on the Wisconsin River (43.31 , -89.7283) started with full monthly records being recorded in 1912 with complete monthly records through 2007. In mid-2007 a nearby station was established in Sauk City at the wastewater treatment plant (43.262 , -89.7349) with continuous data from 2008 through the present. The two stations are relatively close (about 3.25 miles apart), and both are slightly more than 4 miles to the west of the centroid of Fish Lake (Dane Co.) a core study lake in the North Temperate Lakes Long-Term Ecological Research Project conducted by the Center for Limnology at the University of Wisconsin-Madison. The compiled monthly records are based on daily NOAA precipitation records available electronically to the public. As a general practice, daily precipitation over weekends and holidays was not regularly recorded at the stations such that cumulative totals were recorded the following workweek day. As such, while the records for each single day were not always accurately recorded, the monthly totals were generally accurate. However, starting in 1996 at the Prairie du Sac station, because the cumulative weekend/holiday precipitation didn’t allow known daily totals, those cumulate weekend/holiday records were not submitted to NOAA so they were recorded as missing data in NOAA’s electronic dataset. To rectify the many months of missing data, pdf’s of the original hand-written monthly submissions were retrieved from NOAA’s archives such that the monthly precipitation totals could be calculated. In the process a few transcription errors in the electronic records of other months were also corrected in this dataset as well as determining a few other monthly records that were missing. Thus, this dataset of monthly precipitation at the two nearby weather stations is complete and hopefully accurate. 
    more » « less
  3. The data files in this data set contain climate information from sites on the North Slope of Alaska in or near the Kuparuk River basin. The data was collected for a hydrologic study of rivers in the North Slope region between 1985-present. Hydro-meteorological stations were established at various locations throughout the Kuparuk, but also in the Putuligayuk and Sagavanirktok watersheds. The variables collected at most stations were air temperature, humidity, wind speed and direction, soil temperature, snow temperature, precipitation, snow depth, and radiation. In the Imnavait Creek watershed (headwaters of the Kuparuk River), the Imnavait B site (IB) meteorological station operated from 1986 to present. This data package contains meteorological data from the Imnavait B site (IB) station and snow depth from the nearby station in the valley bottom (Imnavait Creek weir [IH]) collected from 2017 to 2023. Variables in this data package include air temperature, relative humidity, wind speed and direction, rainfall, and radiation at the Imnavait B site (IB) (2018-2023) and winter snow depth at Imnavait Weir (IH) (2017-2023). IMPORTANT NOTE: This dataset contains Imnavait B site (IB) meteorological data for 2018-2023. Updates and corrections to Imnavait B site (IB) (and others) were made in 2021 to the original datasets by the investigators, and all of the previously published data files (prior to 2008) should be replaced with the updated dataset (1985-2018) available at https://arcticdata.io/catalog/view/doi%3A10.18739%2FA2TQ5RF72. The following corrections were made to the datasets originally published in 2008 and 2010 (for data collected 1985-2008): 1) data from annual .csv files were merged into one .csv file (for each station) containing all years of data, 2) appended new data collected from 2008 to 2018 into the .csv file 3) standardized file headers, 4) standardized variable names, units, and sensor installation height above ground surface 5) reviewed all data for quality assurance and added qualifiers to erroneous data, 6) added a data qualifier to wind data during periods of extensive riming on wind sensors, 7) added a qualifier when air temperatures are below -39 degrees Celsius (C) (minimum reporting temperature of some air temperature sensors), and 8) removed duplicative data and fixed timestamp issues. See https://arcticdata.io/catalog/view/urn%3Auuid%3Ad5fa4cfa-b84b-4970-926a-8dd10b418e6d for additional climate data from other nearby stations in our studies. 
    more » « less
  4. These datasets accompany a publication in Geophysical Research Letters by Martens et al. (2024), entitled: "GNSS Geodesy Quantifies Water-Storage Gains and Drought Improvements in California Spurred by Atmospheric Rivers." Please refer to the manuscript and supporting information for additional details.Dataset 1: Seasonal Changes in TWS based on the Mean and Median of the Solution SetWe estimate net gains in water storage during the fall and winter of each year (October to March) using the mean TWS solutions from all nine inversion products, subtracting the average storage for October from the average storage for March in the following year. One-sigma standard deviations are computed as the square root of the sum of the variances for October and for March. The variance in each month is computed based on the nine independent estimates of mean monthly storage (see “GNSS Analysis and Inversion” in the Supporting Information).The dataset includes net gains in water storage for both the Sierra Nevada and the SST watersheds (see header lines). For each watershed, results are provided in units of volume (km3) and in units of equivalent water height (mm). Furthermore, for each watershed, we also provide the total storage gains based on non-detrended and linearly detrended time series. In columns four and five, respectively, we provide estimates of snow water equivalent (SWE) from SNODAS (National Operational Hydrologic Remote Sensing Center, 2023) and water-storage changes in surface reservoirs from CDEC (California Data Exchange Center, 2023). In the final column, we provide estimates of net gains in subsurface storage (soil moisture plus groundwater), which are computed by subtracting SWE and reservoir storage from total storage.For each data block, the columns are: (1) time period (October of the starting year to March of the following year); (2) average gain in total water storage constrained by nine inversions of GNSS data; (3) one-sigma standard deviation in the average gain in total water storage; (4) gain in snow water equivalent, computed by subtracting the average snow storage in October from the average snow storage in March of the following year; (5) gain in reservoir storage (CDEC database; within the boundaries of each watershed), computed by subtracting the average reservoir storage in October from the average reservoir storage in March of the following year; and (6) average gain in subsurface water storage, estimated as the average gain in total water storage minus the average gain in snow storage minus the gain in reservoir storage.For the period from October 2022 to March 2023, we also compute mean gains in total water storage using daily estimates of TWS. Here, we subtract the average storage for the first week in October 2022 (1-7 October) from the average storage for the last week in March 2023 (26 March – 1 April). The one-sigma standard deviation is computed as the square root of the sum of the variances for the first week in October and the last week in March. The variance in each week is computed based on the nine independent estimates of daily storage over seven days (63 values per week). The storage gains for 2022-2023 computed using these methods are distinguished in the datafile by an asterisk (2022-2023*; final row in each data section).Dataset 1a provides estimates of storage changes based on the mean and standard deviation of the solution set. Dataset 1b provides estimates of storage changes based on the median and inter-quartile range of the solution set.Dataset 2: Estimated Changes in TWS in the Sierra NevadaChanges in TWS (units of volume: km3) in the Sierra Nevada watersheds. The first column represents the date (YYYY-MM-DD). For monthly solutions, the TWS solutions apply to the month leading up to that date. The remaining nine columns represent each of the nine solutions described in the text. “UM” represents the University of Montana, “SIO” represents the Scripps Institution of Oceanography, and “JPL” represents the Jet Propulsion Laboratory. “NGL” refers to the use of GNSS analysis products from the Nevada Geodetic Laboratory, “CWU” refers to Central Washington University, and “MEaSUREs” refers to the Making Earth System Data Records for Use in Research Environments program. The time series have not been detrended.We highlight that we have added changes in reservoir storage (see Dataset 8) back into the JPL solutions, since reservoir storage had been modeled and removed from the GNSS time series prior to inversion in the JPL workflow (see “Detailed Description of Methods” in the Supporting Information). Thus, the storage values presented here for JPL differ slightly from storage values pulled directly from Dataset 6 and integrated over the area of the Sierra Nevada watersheds.Dataset 3: Estimated Changes in TWS in the Sacramento-San Joaquin-Tulare BasinSame as Dataset 2, except that data apply to the Sacramento-San Joaquin-Tulare (SST) Basin.Dataset 4: Inversion Products (SIO)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the Scripps Institution of Oceanography (SIO) using the methods described in the Supporting Information.Dataset 5: Inversion Products (UM)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the University of Montana (UM) using the methods described in the Supporting Information.Dataset 6: Inversion Products (JPL)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the Jet Propulsion Laboratory (JPL) using the methods described in the Supporting Information.Dataset 7: Lists of Excluded StationsStations are excluded from an inversion for TWS change based on a variety of criteria (detailed in the Supporting Information), including poroelastic behavior, high noise levels, and susceptibility to volcanic deformation. This dataset provides lists of excluded stations from each institution generating inversion products (SIO, UM, JPL).Dataset 8: Lists of Reservoirs and LakesLists of reservoirs and lakes from the California Data Exchange Center (CDEC) (California Data Exchange Center, 2023), which are shown in Figures 1 and 2 of the main manuscript. In the interest of figure clarity, Figure 1 depicts only those reservoirs that exhibited volume changes of at least 0.15 km3 during the first half of WY23.Dataset 8a includes all reservoirs and lakes in California that exhibited volume changes of at least 0.15 km3 between October 2022 and March 2023. The threshold of 0.15 km3 represents a natural break in the distribution of volume changes at all reservoirs and lakes in California over that period (169 reservoirs and lakes in total). Most of the 169 reservoirs and lakes exhibited volume changes near zero km3. Datasets 8b and 8c include subsets of reservoirs and lakes (from Dataset 8a) that fall within the boundaries of the Sierra Nevada and SST watersheds.Furthermore, in the JPL data-processing and inversion workflow (see “Detailed Description of Methods” in the Supporting Information), surface displacements induced by volume changes in select lakes and reservoirs are modeled and removed from GNSS time series prior to inversion. The water-storage changes in the lakes and reservoirs are then added back into the solutions for water storage, derived from the inversion of GNSS data. Dataset 8d includes the list of reservoirs used in the JPL workflow.Dataset 9: Interseismic Strain Accumulation along the Cascadia Subduction ZoneJPL and UM remove interseismic strain accumulation associated with locking of the Cascadia subduction zone using an updated version of the Li et al. model (Li et al., 2018); see Supporting Information Section 2d. The dataset lists the east, north, and up velocity corrections (in the 4th, 5th, and 6th columns of the dataset, respectively) at each station; units are mm/year. The station ID, latitude, and longitude are listed in columns one, two, and three, respectively, of the dataset.Dataset 10: Days Impacted by Atmospheric RiversA list of days impacted by atmospheric rivers within (a) the HUC-2 boundary for California from 1 January 2008 until 1 April 2023 [Dataset 10a] and (b) the Sierra Nevada and SST watersheds from 1 October 2022 until 1 April 2023 [Dataset 10b]. File formats: [decimal year; integrated water-vapor transport (IVT) in kg m-1 s-1; AR category; and calendar date as a two-digit year followed by a three-character month followed by a two-digit day]. The AR category reflects the peak intensity anywhere within the watershed. We use the detection and classification methods of (Ralph et al., 2019; Rutz et al., 2014, 2019). See also Supporting Information Section 2i.Dataset 10c provides a list of days and times when ARs made landfall along the California coast between October 1980 and September 2023, based on the MERRA-2 reanalysis using the methods of (Rutz et al., 2014, 2019). Only coastal grid cells are included. File format: [year, month, day, hour, latitude, longitude, and IVT in kg m-1 s-1]. Values are sorted by time (year, month, day, hour) and then by latitude. See also Supporting Information Section 2g. 
    more » « less
  5. The effects of neighborhood-scale land use and land cover (LULC) properties on observed air temperatures are investigated in two regions within Los Angeles County: Central Los Angeles and the San Fernando Valley (SFV). LULC properties of particular interest in this study are albedo and tree fraction. High spatial density meteorological observations are obtained from 76 personal weather-stations. Observed air temperatures were then related to the spatial mean of each LULC parameter within a 500 m radius “neighborhood” of each weather station, using robust regression for each hour of July 2015. For the neighborhoods under investigation, increases in roof albedo are associated with decreases in air temperature, with the strongest sensitivities occurring in the afternoon. Air temperatures at 14:00–15:00 local daylight time are reduced by 0.31 °C and 0.49 °C per 1 MW increase in daily average solar power reflected from roofs per neighborhood in SFV and Central Los Angeles, respectively. Per 0.10 increase in neighborhood average albedo, daily average air temperatures were reduced by 0.25 °C and 1.84 °C. While roof albedo effects on air temperature seem to exceed tree fraction effects during the day in these two regions, increases in tree fraction are associated with reduced air temperatures at night. 
    more » « less