Abstract Manufacturing sustainable sodium ion batteries with high energy density and cyclability requires a uniquely tailored technology and a close attention to the economical and environmental factors. In this work, we summarized the most important design metrics in sodium ion batteries with the emphasis on cathode materials and outlined a transparent data reporting approach based on common metrics for performance evaluation of future technologies. Sodium-ion batteries are considered as one of the most promising alternatives to lithium-based battery technologies. Despite the growing research in this field, the implementation of this technology has been practically hindered due to a lack of high energy density cathode materials with a long cycle-life. In this perspective, we first provide an overview of the milestones in the development of Na-ion battery (NIB) systems over time. Next, we discuss critical metrics in extraction of key elements used in NIB cathode materials which may impact the supply chain in near future. Finally, in the quest of most promising cathode materials for the next generation of NIBs, we overlay an extensive perspective on the main findings in design and test of more than 295 reports in the past 10 years, exhibiting that layered oxides, Prussian blue analogs (PBAs) and polyanions are leading candidates for cathode materials. An in-depth comparison of energy density and capacity retention of all the currently available cathode materials is also provided. In this perspective, we also highlight the importance of large data analysis for sustainable material design based on available datasets. The insights provided in this perspective, along with a more transparent data reporting approach and an implementation of common metrics for performance evaluation of NIBs can help accelerate future cathode materials design in the NIB field. Graphical abstract
more »
« less
Roadmap for focused ion beam technologies
The focused ion beam (FIB) is a powerful tool for fabrication, modification, and characterization of materials down to the nanoscale. Starting with the gallium FIB, which was originally intended for photomask repair in the semiconductor industry, there are now many different types of FIB that are commercially available. These instruments use a range of ion species and are applied broadly in materials science, physics, chemistry, biology, medicine, and even archaeology. The goal of this roadmap is to provide an overview of FIB instrumentation, theory, techniques, and applications. By viewing FIB developments through the lens of various research communities, we aim to identify future pathways for ion source and instrumentation development, as well as emerging applications and opportunities for improved understanding of the complex interplay of ion–solid interactions. We intend to provide a guide for all scientists in the field that identifies common research interest and will support future fruitful interactions connecting tool development, experiment, and theory. While a comprehensive overview of the field is sought, it is not possible to cover all research related to FIB technologies in detail. We give examples of specific projects within the broader context, referencing original works and previous review articles throughout.
more »
« less
- Award ID(s):
- 1904802
- PAR ID:
- 10561581
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Reviews
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 1931-9401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The last half-century has witnessed the birth and development of a new multidisciplinary field at the edge between materials science, nanoscience, engineering, and chemistry known as Molecular Electronics. This field deals with the electronic properties of individual molecules and their integration as active components in electronic circuits and has also been applied to biomolecules, leading to BioMolecular Electronics and opening new perspectives for single-molecule biophysics and biomedicine. Herein, we provide a brief introduction and overview of the BioMolecular electronics field, focusing on nucleic acids and potential applications for these measurements. In particular, we review the recent demonstration of the first single-molecule electrical detection of a biologically-relevant nucleic acid. We also show how this could be used to study biomolecular interactions and applications in liquid biopsy for early cancer detection, among others. Finally, we discuss future perspectives and challenges in the applications of this fascinating research field.more » « less
-
Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs) as high-energy-density alternatives to complement lithium-ion-based energy storage technologies, the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase (CEI) decay are intensely discussed in the field. Synchrotron X-ray and neutron scattering characterization techniques offer unique capabilities for investigating the complex structure and dynamics of high-voltage cathode behavior. In this review, to accelerate the development of stable high-voltage SIBs, we provide a comprehensive and thorough overview of the use of synchrotron X-ray and neutron scattering in studying SIB cathode materials with an emphasis on high-voltage layered transition metal oxide cathodes. We then discuss these characterizations in relation to polyanion-type cathodes, Prussian blue analogues, and organic cathode materials. Finally, future directions of these techniques in high-voltage SIB research are proposed, including CEI studies for polyanion-type cathodes and the extension of neutron scattering techniques, as well as the integration of morphology and phase characterizations.more » « less
-
Solid-state nuclear magnetic resonance (ssNMR) has been playing an indispensable role in revealing the interplay of structure and molecular dynamics in polymers at different states. In this Perspective, we first provide an overview about the fundamental spin interactions in ssNMR and then highlight some recent progress on sensitivity-enhanced ssNMR spectroscopy and in situ NMR. Moreover, we highlight ssNMR applications in the field of polymer crystallization, molecular dynamics, chemical reactions, supramolecular polymers, energy materials, and so on. Finally, our personal perspective is given on the future development at the crossroad of ssNMR and polymer science.more » « less
-
Abstract Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior to development of quantitative approaches to explain and predict experimental observations requires advances in the methods and practice in simulations for reproducibility and reliability, and interacting with a computational ecosystem that integrates new theory development, innovative applications, and an increasingly integrated software and computational infrastructure that takes advantage of the increasingly powerful computational methods and computing hardware.more » « less
An official website of the United States government

