skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating hidden relationships in dynamical systems: Discovering drivers of infection rates of COVID-19
Discovering causal influences among internal variables is a fundamental goal of complex systems research. This paper presents a framework for uncovering hidden relationships from limited time-series data by combining methods from nonlinear estimation and information theory. The approach is based on two sequential steps: first, we reconstruct a more complete state of the underlying dynamical system, and second, we calculate mutual information between pairs of internal state variables to detail causal dependencies. Equipped with time-series data related to the spread of COVID-19 from the past three years, we apply this approach to identify the drivers of falling and rising infections during the three main waves of infection in the Chicago metropolitan region. The unscented Kalman filter nonlinear estimation algorithm is implemented on an established epidemiological model of COVID-19, which we refine to include isolation, masking, loss of immunity, and stochastic transition rates. Through the systematic study of mutual information between infection rate and various stochastic parameters, we find that increased mobility, decreased mask use, and loss of immunity post sickness played a key role in rising infections, while falling infections were controlled by masking and isolation.  more » « less
Award ID(s):
2027988
PAR ID:
10561647
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume:
34
Issue:
3
ISSN:
1054-1500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic has had a devastating impact on the world at large with over 750 million cases and almost 7 million deaths reported thus far. Of those, over 100 million cases and 1 million deaths have occurred in the United States of America (USA). The mental health of the general population has been impacted by several aspects of the pandemic including lockdowns, media sensationalism, social isolation, and spread of the disease. In this paper, we examine the associations that social isolation and COVID-19 infection and related death had with the prevalence of anxiety and depression in the general population of the USA in a state-by-state multiple time-series analysis. Vector Error Correction Models are estimated and we subsequently evaluated the coefficients of the estimated models and calculated their impulse response functions for further interpretation. We found that COVID-19 incidence was positively associated with anxiety across the studied period for a majority of states. Variables related to social isolation had a varied effect depending on the state being considered. 
    more » « less
  2. null (Ed.)
    Background: Our objective was to examine the temporal relationship between COVID-19 infections among prison staff, incarcerated individuals, and the general population in the county where the prison is located among federal prisons in the United States. Methods: We employed population-standardized regressions with fixed effects for prisons to predict the number of active cases of COVID-19 among incarcerated persons using data from the Federal Bureau of Prisons (BOP) for the months of March to December in 2020 for 63 prisons. Results: There is a significant relationship between the COVID-19 prevalence among staff, and through them, the larger community, and COVID-19 prevalence among incarcerated persons in the US federal prison system. When staff rates are low or at zero, COVID-19 incidence in the larger community continues to have an association with COVID-19 prevalence among incarcerated persons, suggesting possible pre-symptomatic and asymptomatic transmission by staff. Masking policies slightly reduced COVID-19 prevalence among incarcerated persons, though the association between infections among staff, the community, and incarcerated persons remained significant and strong. Conclusion: The relationship between COVID-19 infections among staff and incarcerated persons shows that staff is vital to infection control, and correctional administrators should also focus infection containment efforts on staff, in addition to incarcerated persons. 
    more » « less
  3. In utero exposure to COVID-19 infection may lead to large intergenerational health effects. The impact of infection exposure has likely evolved since the onset of the pandemic as new variants emerge, immunity from prior infection increases, vaccines become available, and vaccine hesitancy persists, such thatwheninfection is experienced is as important aswhetherit is experienced. We examine the changing impact of COVID-19 infection on preterm birth and the moderating role of vaccination. We offer the first plausibly causal estimate of the impact of maternal COVID-19 infection by using population data with no selectivity, universal information on maternal COVID-19 infection, and linked sibling data. We then assess change in this impact from 2020 to 2023 and evaluate the protective role of COVID-19 vaccination on infant health. We find a substantial adverse effect of prenatal COVID-19 infection on the probability of preterm birth. The impact was large during the first 2 y of the pandemic but had fully disappeared by 2022. The harmful impact of COVID-19 infection disappeared almost a year earlier in zip codes with high vaccination rates, suggesting that vaccines might have prevented thousands of preterm births. The findings highlight the need to monitor the changing consequences of emerging infectious diseases over time and the importance of mitigation strategies to reduce the burden of infection on vulnerable populations. 
    more » « less
  4. COVID-19 seroprevalence changes over time, with infection, vaccination, and waning immunity. Seroprevalence estimates are needed to determine when increased COVID-19 vaccination coverage is needed, and when booster doses should be considered, to reduce the spread and disease severity of COVID-19 infection. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. This is the first mathematical model to do so. We estimate that 60–80% of the Canadian population has some immunity to COVID-19 by late Summer 2021, depending on specific characteristics of the vaccine and the waning rate of immunity. Models results indicate that increased vaccination uptake in age groups 12–29, and booster doses in age group 50+ are needed to reduce the severity COVID-19 Fall 2021 resurgence. 
    more » « less
  5. null (Ed.)
    The future trajectory of the coronavirus disease 2019 (COVID-19) pandemic hinges on the dynamics of adaptive immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, salient features of the immune response elicited by natural infection or vaccination are still uncertain. We use simple epidemiological models to explore estimates for the magnitude and timing of future COVID-19 cases, given different assumptions regarding the protective efficacy and duration of the adaptive immune response to SARS-CoV-2, as well as its interaction with vaccines and nonpharmaceutical interventions. We find that variations in the immune response to primary SARS-CoV-2 infections and a potential vaccine can lead to markedly different immune landscapes and burdens of critically severe cases, ranging from sustained epidemics to near elimination. Our findings illustrate likely complexities in future COVID-19 dynamics and highlight the importance of immunological characterization beyond the measurement of active infections for adequately projecting the immune landscape generated by SARS-CoV-2 infections. 
    more » « less