skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2108196

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The United States is a major producer and exporter of agricultural goods, fulfilling global demands for food, fiber, and fuel while generating substantial economic benefits. Agriculture in the U.S. not only dominates land use but also ranks as the largest water-consuming sector. High-resolution cropland mapping and insights into cultivation trends are essential to enhance sustainable management of land and water resources. Existing data sources present a trade-off between temporal breadth and spatial resolution, leading to gaps in detailed geographic crop distribution. To bridge this gap, we adopted a data-fusion methodology that leverages the advantages of various data sources, including county-level data from the U.S. Department of Agriculture, along with several gridded land use datasets. This approach enabled us to create annual maps, termed HarvestGRID, of irrigated and harvested areas for 30 key crops across the U.S. from 1981 to 2019 at a resolution of 2.5 arc minutes. Over the past four decades, irrigated harvested area has remained relatively stable nationally; however, several western states exhibit a declining trend, while some eastern states show an upward trend. Notably, more than 50% of the irrigated land in the U.S. lies above three major aquifers: the High Plains, Central Valley, and Mississippi Embayment Aquifers. We assessed the accuracy of HarvestGRID by comparing it with other large-scale gridded cropland databases, identifying both consistencies and discrepancies across different years, regions, and crops. This dataset is pivotal for analyzing long-term cropland use patterns and supports the advancement of more sustainable agricultural practices. 
    more » « less
  2. Abstract Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, USGWD comprises over 14.2 million well records with attributes, such as well purpose, location, depth, and capacity, for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States. 
    more » « less
  3. Abstract Groundwater scarcity poses threats to communities across the globe, and effectively managing those challenges requires designing policy that achieves institutional fit. Collective action is well-suited to match rules with local context, and multiple pathways exist for communities to achieve reductions in groundwater use. To better understand how local conditions influence rule design, we examine two groundwater-reliant communities in the Western US that engaged in collective-action to arrive at distinct groundwater management rules. We consider: what drove stakeholders in Northwestern Kansas (NWKS) and San Luis Valley, Colorado (SLV) to adopt local groundwater policies, and why were different management pathways chosen? Further, why is more heterogeneity observed between local management organizations in SLV as compared to NWKS? To investigate these questions, we employ grounded theory to interpret the rules in reference to local hydro-agro-economic statistics and interviews with stakeholders (n= 19) in each region selected by expert sampling. We find that the additional goals of groundwater rules in SLV, partially driven by key contrasts in the resource system compared to NWKS, and higher resource productivity in SLV, creates both the need for and efficacy of a price-centered policy. Furthermore, variation in the resource systems and associated farm characteristics between subdistricts drives higher heterogeneity in rule design between local management districts in SLV compared to NWKS. More generally, we find the local flexibility afforded through the collective-action process as critical, even if it were to arrive at alternative, non-economic based incentives. 
    more » « less
  4. Abstract Aquifers supporting irrigated agriculture are a resource of global importance. Many of these systems, however, are experiencing significant pumping‐induced stress that threatens their continued viability as a water source for irrigation. Reductions in pumping are often the only option to extend the lifespans of these aquifers and the agricultural production they support. The impact of reductions depends on a quantity known as “net inflow” or “capture.” We use data from a network of wells in the western Kansas portions of the High Plains aquifer in the central United States to demonstrate the importance of net inflow, how it can be estimated in the field, how it might vary in response to pumping reductions, and why use of “net inflow” may be preferred over “capture” in certain contexts. Net inflow has remained approximately constant over much of western Kansas for at least the last 15 to 25 years, thereby allowing it to serve as a target for sustainability efforts. The percent pumping reduction required to reach net inflow (i.e., stabilize water levels for the near term [years to a few decades]) can vary greatly over this region, which has important implications for groundwater management. However, the reduction does appear practically achievable (less than 30%) in many areas. The field‐determined net inflow can play an important role in calibration of regional groundwater models; failure to reproduce its magnitude and temporal variations should prompt further calibration. Although net inflow is a universally applicable concept, the reliability of field estimates is greatest in seasonally pumped aquifers. 
    more » « less
  5. Abstract Many irrigated agricultural areas seek to prolong the lifetime of their groundwater resources by reducing pumping. However, it is unclear how lagged responses, such as reduced groundwater recharge caused by more efficient irrigation, may impact the long‐term effectiveness of conservation initiatives. Here, we use a variably saturated, simplified surrogate groundwater model to: (a) analyze aquifer responses to pumping reductions, (b) quantify time lags between reductions and groundwater level responses, and (c) identify the physical controls on lagged responses. We explore a range of plausible model parameters for an area of the High Plains aquifer (USA) where stakeholder‐driven conservation has slowed groundwater depletion. We identify two types of lagged responses that reduce the long‐term effectiveness of groundwater conservation, recharge‐dominated and lateral‐flow‐dominated, with vertical hydraulic conductivity (KZ) the major controlling variable. When highKZallows percolation to reach the aquifer, more efficient irrigation reduces groundwater recharge. By contrast, when lowKZimpedes vertical flow, short term changes in recharge are negligible, but pumping reductions alter the lateral flow between the groundwater conservation area and the surrounding regions (lateral‐flow‐dominated response). For the modeled area, we found that a pumping reduction of 30% resulted in median usable lifetime extensions of 20 or 25 years, depending on the dominant lagged response mechanism (recharge‐ vs. lateral‐flow‐dominated). These estimates are far shorter than estimates that do not account for lagged responses. Results indicate that conservation‐based pumping reductions can extend aquifer lifetimes, but lagged responses can create a sizable difference between the initially perceived and actual long‐term effectiveness. 
    more » « less
  6. Free, publicly-accessible full text available December 1, 2025
  7. Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, the USGWD comprises over 14.2 million well records with attributes such as well purpose, location, depth, and capacity for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States. 
    more » « less