skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching Neuroscience in the Art Museum
Neuroscience is an interdisciplinary field that investigates chemical and cellular foundations for perception, emotion, and memory. At Kenyon College, these concepts are reinforced through class sessions at The Gund, Kenyon’s teaching art museum, in both lower- and upper-level courses within the Department of Neuroscience. Students explore the neurological basis of visual processing through analysis of abstract works in The Gund’s permanent collection. Using guided inquiry, students explore color’s nonobjective properties, the variability of these properties based on context (color consilience), how color and color combinations imply or express textures and surfaces, and why color is often used as a metaphor for emotion. Our class sessions, refined over several semesters, reinforce principles discussed in didactic neuroscience lectures and elicit productive intersections between art and science. By upholding the rigors of scientific inquiry within the gallery, we have centered the art museum as a place for interdisciplinary study.  more » « less
Award ID(s):
1941664
PAR ID:
10561738
Author(s) / Creator(s):
;
Publisher / Repository:
International Committee for University Museums and Collections
Date Published:
Journal Name:
University museums and collections journal
Volume:
16
Issue:
3
ISSN:
2071-7229
Page Range / eLocation ID:
235-243
Subject(s) / Keyword(s):
college neuroscience education, sensory systems, art, active learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cognitive neuroscience is the interdisciplinary study of how cognitive and intellectual functions are processed and represented within the brain, which is critical to building understanding of core psychological and behavioural processes such as learning, memory, behaviour, perception, and consciousness. Understanding these processes not only offers relevant fundamental insights into brain-behavioural relations, but may also lead to actionable knowledge that can be applied in the clinical treatment of patients with various brain-related disabilities. This Handbook examines complex cognitive systems through the lens of neuroscience, as well as providing an overview of development and applications within cognitive and systems neuroscience research and beyond. Containing 35 original, state of the art contributions from leading experts in the field, this Handbook is essential reading for researchers and students of cognitive psychology, as well as scholars across the fields of neuroscientific, behavioural and health sciences. Part 1: Attention, Learning and Memory; Part 2: Language and Communication; Part 3: Emotion and Motivation; Part 4: Social Cognition; Part 5: Cognitive Control and Decision Making; and Part 6: Intelligence. 
    more » « less
  2. Chen, Audrey (Ed.)
    Training students in interdisciplinary thinking is critical for the future of scientific discovery and problem-solving more generally. Therefore, students must have early opportunities to grapple with knowns and unknowns at the frontiers of interdisciplinary inquiry. Neuroimmunology challenges students to think at the intersection of two rapidly evolving fields, neuroscience and immunology. As these disciplines focus on complex systems, their intersection represents a unique opportunity for students to witness the nature and process of interdisciplinary collaboration and synthesis. However, the fast pace of research and specialized knowledge in both disciplines present challenges for instructors interested in teaching the subject to undergraduate students. In this article, we share and describe a curriculum developed using a backward-design approach to analyze core concepts in both neuroscience and immunology, which were articulated by disciplinary experts in collaboration with their respective education communities. We determine overlaps between these conceptual frameworks, identify key prerequisite knowledge, and suggest example activities to introduce neuroimmunology to undergraduate students. This curriculum may be used for an entire course, or modified into shorter units that instructors can use within diverse educational contexts. We hope that this effort will encourage instructors to adopt neuroimmunology into their curricula, provide a roadmap to forge other such interdisciplinary educational collaborations, and prepare students to develop creative solutions to current and future societal problems. 
    more » « less
  3. null (Ed.)
    The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods. 
    more » « less
  4. This article discusses how to create an interactive virtual training program at the intersection of neuroscience, robotics, and computer science for high school students with equity of access. A four-day microseminar, titled Swarming Powered by Neuroscience (SPN), was conducted virtually through a combination of presentations and interactive computer game simulations. The SPN microseminar was delivered by subject matter experts in neuroscience, mathematics, multi-agent swarm robotics, and education. The objective of this research was to determine if taking an interdisciplinary approach to high school education would enhance the students learning experiences in fields such as neuroscience, robotics, or computer science. This study found an improvement in student engagement for neuroscience by 16.6%, while interest in robotics and computer science improved respectively by 2.7% and 1.8%. The majority of students (64%) strongly agreed that they enjoyed learning from an interdisciplinary team of experts and 70% strongly agreed that the microseminar emphasized the need to have instruction teams with diverse disciplinary backgrounds. The curriculum materials, developed for the SPN microseminar, can be used by high school teachers to further evaluate interdisciplinary instructions across life and physical sciences and computer science. 
    more » « less
  5. Vuong, Son; Bradford, Phillip; Rajashree, Paul (Ed.)
    Phenotypic analysis from digital photographs is a useful tool in bioinformatics, and it has become increasingly important in the study of museum specimens as more natural history museum archives are digitized. However, steep learning curves and high costs associated with currently available image analysis software limits archive use by undergraduates, K-12 students, researchers at smaller educational institutions, and citizen scientists. We have created the Scientific Image Analysis (SIA) application to overcome these limitations with software that is freely available to any user and has an intuitive interface. SIA includes tools to measure length, angle, color and area from digital photographs, and includes tools to correct for color biases and skew from the perspective of the photograph. In this short paper we test these tools and their repeatability by measuring 497 avian museum specimens. We have quantified variation in bill length, angle of curvature of the bill, and plumage color. We find that measurements from SIA tools were highly repeatable across measurers, across replicate photographs of the same specimen, and were robust to user choices within SIA tools. Index Terms—bioinformatics, color correction, graphical output, image analysis, morphometrics, museum specimens 
    more » « less