skip to main content

Title: EEG-Based Emotion Classification Using Graph Signal Processing
The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods.  more » « less
Award ID(s):
1809356 1750428 1934962
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
1065 - 1069
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The COVID-19 pandemic severely changed the way of life in the United States (US). From early scattered regional outbreaks to current country-wide spread, and from rural areas to highly populated cities, the contagion exhibits diverse patterns at various timescales and locations. We thus conduct a graph frequency analysis to inves- tigate the spread patterns of COVID-19 in different US counties. The commute flows between all 3142 US counties were used to construct a graph capturing the population mobility. The numbers of daily confirmed COVID-19 cases per county were collected and represented as graph signals, which were then mapped into the frequency domain via the graph Fourier transform. The concept of graph frequency in Graph Signal Processing (GSP) enables the decomposition of graph signals (i.e., daily confirmed cases) into modes with smooth or rapid variations with respect to the underlying mobility graph. These different modes of variability are shown to relate to COVID-19 spread patterns within and across counties. Changes in the nature of spread within geographical regions are also revealed by graph frequency analysis at finer temporal scales. Overall, our GSP-based approach leverages case count and mobility data to unveil spatio-temporal contagion patterns of COVID-19 incidence for each US county. Results here support the promising prospect of using GSP tools for epidemiology knowledge discovery on graphs. 
    more » « less
  2. The growing success of graph signal processing (GSP) approaches relies heavily on prior identification of a graph over which network data admit certain regularity. However, adaptation to increasingly dynamic environments as well as demands for real-time processing of streaming data pose major challenges to this end. In this context, we develop novel algorithms for online network topology inference given streaming observations assumed to be smooth on the sought graph. Unlike existing batch algorithms, our goal is to track the (possibly) time-varying network topology while maintaining the memory and computational costs in check by processing graph signals sequentially-in-time. To recover the graph in an online fashion, we leverage proximal gradient (PG) methods to solve a judicious smoothness-regularized, time-varying optimization problem. Under mild technical conditions, we establish that the online graph learning algorithm converges to within a neighborhood of (i.e., it tracks) the optimal time-varying batch solution. Computer simulations using both synthetic and real financial market data illustrate the effectiveness of the proposed algorithm in adapting to streaming signals to track slowly-varying network connectivity. 
    more » « less
  3. Graph signal processing (GSP) techniques are powerful tools that model complex relationships within large datasets, being now used in a myriad of applications in different areas including data science, communication networks, epidemiology, and sociology. Simple graphs can only model pairwise relationships among data which prevents their application in modeling networks with higher-order relationships. For this reason, some efforts have been made to generalize well-known graph signal processing techniques to more complex graphs such as hypergraphs, which allow capturing higher-order relationships among data. In this article, we provide a new hypergraph signal processing framework (t-HGSP) based on a novel tensor-tensor product algebra that has emerged as a powerful tool for preserving the intrinsic structures of tensors. The proposed framework allows the generalization of traditional GSP techniques while keeping the dimensionality characteristic of the complex systems represented by hypergraphs. To this end, the core elements of the t-HGSP framework are introduced, including the shifting operators and the hypergraph signal. The hypergraph Fourier space is also defined, followed by the concept of bandlimited signals and sampling. In our experiments, we demonstrate the benefits of our approach in applications such as clustering and denoising. 
    more » « less
  4. Abstract Background

    Characterizing the topology of gene regulatory networks (GRNs) is a fundamental problem in systems biology. The advent of single cell technologies has made it possible to construct GRNs at finer resolutions than bulk and microarray datasets. However, cellular heterogeneity and sparsity of the single cell datasets render void the application of regular Gaussian assumptions for constructing GRNs. Additionally, most GRN reconstruction approaches estimate a single network for the entire data. This could cause potential loss of information when single cell datasets are generated from multiple treatment conditions/disease states.


    To better characterize single cell GRNs under different but related conditions, we propose the joint estimation of multiple networks using multiple signed graph learning (scMSGL). The proposed method is based on recently developed graph signal processing (GSP) based graph learning, where GRNs and gene expressions are modeled as signed graphs and graph signals, respectively. scMSGL learns multiple GRNs by optimizing the total variation of gene expressions with respect to GRNs while ensuring that the learned GRNs are similar to each other through regularization with respect to a learned signed consensus graph. We further kernelize scMSGL with the kernel selected to suit the structure of single cell data.


    scMSGL is shown to have superior performance over existing state of the art methods in GRN recovery on simulated datasets. Furthermore, scMSGL successfully identifies well-established regulators in a mouse embryonic stem cell differentiation study and a cancer clinical study of medulloblastoma.

    more » « less
  5. We propose a deep learning solution to the inverse problem of localizing sources of network diffusion. Invoking graph signal processing (GSP) fundamentals, the problem boils down to blind estimation of a diffusion filter and its sparse input signal encoding the source locations. While the observations are bilinear functions of the unknowns, a mild requirement on invertibility of the graph filter enables a convex reformulation that we solve via the alternating-direction method of multipliers (ADMM). We unroll and truncate the novel ADMM iterations, to arrive at a parameterized neural network architecture for Source Localization on Graphs (SLoG-Net), that we train in an end-to-end fashion using labeled data. This way we leverage inductive biases of a GSP model-based solution in a data-driven trainable parametric architecture, which is interpretable, parameter efficient, and offers controllable complexity during inference. Experiments with simulated data corroborate that SLoG-Net exhibits performance in par with the iterative ADMM baseline, while attaining significant (post-training) speedups. 
    more » « less