skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genome assemblies for Chromidotilapia guntheri (Teleostei: Cichlidae) identify a novel candidate gene for vertebrate sex determination, RIN3
Advances in genome sequencing have greatly accelerated the identification of sex chromosomes in a variety of species. Many of these species have experienced structural rearrangements that reduce recombination between the sex chromosomes, allowing the accumulation of sequence differences over many megabases. Identification of the genes that are responsible for sex determination within these sometimes large regions has proved difficult. Here, we identify an XY sex chromosome system on LG19 in the West African cichlid fishChromidotilapia guntheriin which the region of differentiation extends over less than 400 kb. We develop high-quality male and female genome assemblies for this species, which confirm the absence of structural variants, and which facilitate the annotation of genes in the region. The peak of differentiation lies withinrin3, which has experienced several debilitating mutations on the Y chromosome. We suggest two hypotheses about how these mutations might disrupt endocytosis, leading to Mendelian effects on sexual development.  more » « less
Award ID(s):
1830753
PAR ID:
10561745
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers in Genetics
Date Published:
Journal Name:
Frontiers in Genetics
Volume:
15
ISSN:
1664-8021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Supergenes, regions of the genome with suppressed recombination between sets of functional mutations, contribute to the evolution of complex phenotypes in diverse systems. Excluding sex chromosomes, most supergenes discovered so far appear to be young, being found in one species or a few closely related species. Here, we investigate how a chromosome harbouring an ancient supergene has evolved over about 30 million years (Ma). TheFormicasupergene underlies variation in colony queen number in at least five species. We expand previous analyses of sequence divergence on this chromosome to encompass about 90 species spanning theFormicaphylogeny. Within the nonrecombining region, the geneknockoutcontains 22 single nucleotide polymorphisms (SNPs) that are consistently differentiated between two alternative supergene haplotypes in divergent EuropeanFormicaspecies, and we show that these same SNPs are present in mostFormicaclades. In these clades, including an early diverging NearcticFormicaclade, individuals with alternative genotypes atknockoutalso have higher differentiation in other portions of this chromosome. We identify hotspots of SNPs along this chromosome that are present in multipleFormicaclades to detect genes that may have contributed to the emergence and maintenance of the genetic polymorphism. Finally, we infer three gene duplications on one haplotype, based on apparent heterozygosity within these genes in the genomes of haploid males. This study strengthens the evidence that this supergene originated early in the evolution ofFormicaand that just a few loci in this large region of suppressed recombination retain strongly differentiated alleles across contemporaryFormicalineages. 
    more » « less
  2. In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plantSilene latifoliahas a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome. Comparative analysis of the sex chromosomes with their homologs in outgroups showed that the Y is highly rearranged and degenerated. Recombination suppression between X and Y extended in several steps and triggered a massive accumulation of repeats on the Y as well as in the nonrecombining pericentromeric region of the X, leading to giant sex chromosomes. Using sex phenotype mutants, we identified candidate sex-determining genes on the Y in locations consistent with their favoring recombination suppression events 11 and 5 million years ago. 
    more » « less
  3. Meiklejohn, Colin (Ed.)
    Sex chromosomes often evolve unique patterns of gene expression during spermatogenesis. In many species, sex-linked genes are downregulated during meiosis in response to asynapsis of the heterogametic sex chromosome pair (meiotic sex chromosome inactivation; MSCI). This process has evolved convergently across many taxa with independently derived sex chromosomes. Our understanding how quickly MSCI can evolve and whether it is connected to the degree of sequence degeneration remains limited. Teleost fish are a noteworthy group to investigate MSCI because sex chromosomes have evolved repeatedly across species, often over short evolutionary timescales. Here, we investigate whether MSCI occurs in the threespine stickleback fish (Gasterosteus aculeatus), which have an X and Y chromosome that evolved less than 26 million years ago. Using single-cell RNA-seq, we found that the X and Y chromosomes do not have a signature of MSCI, maintaining gene expression across meiosis. Using immunofluorescence, we also show the threespine stickleback do not form a condensed sex body around the X and Y, a feature of MSCI in many species. We did not see patterns of gene content evolution documented in other species with MSCI. Y-linked ampliconic gene families were expressed across multiple stages of spermatogenesis, rather than being restricted to post-meiotic stages, like in mammals. Our work shows MSCI does not occur in the threespine stickleback fish and has not shaped the evolution of the Y chromosome. In addition, the absence of MSCI in the threespine stickleback suggests this process may not be a conserved feature of teleost fish, despite overall sequence degeneration and structural evolution of the Y chromosome, and argues for additional investigation in other species. We also observed testis-dependent differences in coding and expression evolution for X-linked genes, revealing evidence of testis specific faster-X effect and gene-by-gene dosage compensation. 
    more » « less
  4. Abstract BackgroundSex determination occurs across animal species, but most of our knowledge about its mechanisms comes from only a handful of bilaterian taxa. This limits our ability to infer the evolutionary history of sex determination within animals. ResultsIn this study, we generated a linkage map of the genome of the colonial cnidarianHydractinia symbiolongicarpusand used it to demonstrate that this species has an XX/XY sex determination system. We demonstrate that the X and Y chromosomes have pseudoautosomal and non-recombining regions. We then use the linkage map and a method based on the depth of sequencing coverage to identify genes encoded in the non-recombining region and show that many of them have male gonad-specific expression. In addition, we demonstrate that recombination rates are enhanced in the female genome and that the haploid chromosome number inHydractiniaisn = 15. ConclusionsThese findings establishHydractiniaas a tractable non-bilaterian model system for the study of sex determination and the evolution of sex chromosomes. 
    more » « less
  5. Abstract Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto‐sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto‐sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female‐determiner on one of the chromosomes as well. The two most common male‐determining proto‐Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature‐dependent fitness effects could be manifested through temperature‐dependent gene expression differences across proto‐Y chromosome genotypes. These gene expression differences may be the result ofcisregulatory variants that affect the expression of genes on the proto‐sex chromosomes, ortranseffects of the proto‐Y chromosomes on genes elswhere in the genome. We used RNA‐seq to identify genes whose expression depends on proto‐Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature‐dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time‐point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto‐Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype‐by‐temperature interactions on expression were not enriched on the proto‐sex chromosomes. Moreover, there was no evidence that temperature‐dependent expression is driven by chromosome‐widecis‐regulatory divergence between the proto‐Y and proto‐X alleles. Therefore, if temperature‐dependent gene expression is responsible for differences in phenotypes and fitness of proto‐Y genotypes across house fly populations, these effects are driven by a small number of temperature‐dependent alleles on the proto‐Y chromosomes that may havetranseffects on the expression of genes on other chromosomes. 
    more » « less