Abstract Additive manufacturing (AM) of medical devices such as orthopedic implants and hearing aids is highly attractive because of the potential of AM to match the complex form and mechanics of individual human bodies. Externally worn and implantable tissue‐support devices, such as ankle or knee braces, and hernia repair mesh, offer a new opportunity for AM to mimic tissue‐like mechanics and improve both patient outcomes and comfort. Here, it is demonstrated how explicit programming of the toolpath in an extrusion AM process can enable new, flexible mesh materials having digitally tailored mechanical properties and geometry. Meshes are fabricated by extrusion of thermoplastics, optionally with continuous fiber reinforcement, using a continuous toolpath that tailors the elasticity of unit cells of the mesh via incorporation of slack and modulation of filament–filament bonding. It is shown how the tensile mesh mechanics can be engineered to match the nonlinear response of muscle. An ankle brace with directionally specific inversion stiffness arising from embedded mesh is validated, and further concepts for 3D mesh devices are prototyped.
more »
« less
Multiaxial filament winding of biopolymer microfibers with a collagen resin binder for orthobiologic medical device biomanufacturing
Abstract Multiaxial filament winding is an additive manufacturing technique used extensively in large industrial and military manufacturing yet unexplored for biomedical uses. This study adapts filament winding to biomanufacture scalable, strong, three-dimensional microfiber (3DMF) medical device implants for potential orthopedic applications. Polylactide microfiber filaments were wound through a collagen ‘resin’ bath to create organized, stable orthobiologic implants, which are sized for common ligament (e.g. anterior cruciate ligament) and tendon (e.g. rotator cuff) injuries and can be manufactured at industrial scale using a small footprint, economical, high-output benchtop system. Ethylene oxide or electron beam sterilized 3DMF samples were analyzed by scanning electron microscopy (SEM), underwent ASTM1635-based degradation testing, tensile testing, ISO 10993-based cytocompatibility, and biocompatibility testing, quantified for human platelet-rich plasma (PRP) absorption kinetics, and examined for adhesion of bioceramics and lyophilized collagen after coating. 3DMF implants had consistent fiber size and high alignment by SEM. Negligible mass and strength loss were noted over 4 months in culture. 3DMF implants initially exceeded 1000 N hydrated tensile strength and retained over 70% strength through 4 months in culture, significantly stronger than conventionally produced implants made by fused fiber deposition 3D printing. 3DMF implants absorbed over 3xtheir weight in PRP within 5 min, were cytocompatible and biocompatible in vivo in rabbits, and could readily bind tricalcium phosphate and calcium carbonate coatings discretely on implant ends for further orthobiologic material functionalization. The additive manufacturing process further enabled engineering implants with suture-shuttling passages for facile arthroscopic surgical delivery. This accessible, facile, economical, and rapid microfiber manufacturing platform presents a new method to engineer high-strength, flexible, low-cost, bio-based implants for orthopedic and extended medical device applications.
more »
« less
- Award ID(s):
- 2404176
- PAR ID:
- 10561756
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Biomedical Materials
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1748-6041
- Page Range / eLocation ID:
- 055013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Additive manufacturing (AM) is now widely used for research and industrial production. The benchmark data for mechanical properties of additively manufactured specimens is very useful for many communities. This data article presents a tensile testing dataset of ASTM D638 size specimens without and with embedded internal geometrical features printed using polylactic acid (PLA) in a Fused Filament Fabrication (FFF) additive manufacturing process. The added features can mimic defects of various shapes and sizes. This work is a supplement to the published research articleAssisted defect detection by in-process monitoring of additive manufacturing using optical imaging and infrared thermography(Additive Manufacturing, 2023, 103483). The printed specimens were tensile tested. Stress-strain graphs were developed and used to calculate the mechanical properties such as ultimate tensile strength (UTS) and strain at UTS. The mechanical properties, the correlations between mechanical properties and size, shape and location of geometrical features (defects), and the trends in mechanical properties can be useful in benchmarking the results of other researchers.more » « less
-
Hierarchical collagen fibers are the primary source of strength in tendons and ligaments; however, these fibers largely do not regenerate after injury or with repair, resulting in limited treatment options. We previously developed a static culture system that guides ACL fibroblasts to produce native-sized fibers and early fascicles by 6 weeks. These constructs are promising ligament replacements, but further maturation is needed. Mechanical cues are critical for development in vivo and in engineered tissues; however, the effect on larger fiber and fascicle formation is largely unknown. Our objective was to investigate whether intermittent cyclic stretch, mimicking rapid muscle activity, drives further maturation in our system to create stronger engineered replacements and to explore whether cyclic loading has differential effects on cells at different degrees of collagen organization to better inform engineered tissue maturation protocols. Constructs were loaded with an established intermittent cyclic loading regime at 5 or 10 % strain for up to 6 weeks and compared to static controls. Cyclic loading drove cells to increase hierarchical collagen organization, collagen crimp, and tissue tensile properties, ultimately producing constructs that matched or exceeded immature ACL properties. Further, the effect of loading on cells varied depending on degree of organization. Specifically, 10 % load drove early improvements in tensile properties and composition, while 5 % load was more beneficial later in culture, suggesting a shift in mechanotransduction. This study provides new insight into how cyclic loading affects cell-driven hierarchical fiber formation and maturation, which will help to develop better rehabilitation protocols and engineer stronger replacements. Statement of significance Collagen fibers are the primary source of strength and function in tendons and ligaments throughout the body. These fibers have limited regenerate after injury, with repair, and in engineered replacements, reducing treatment options. Cyclic load has been shown to improve fibril level alignment, but its effect at the larger fiber and fascicle length-scale is largely unknown. Here, we demonstrate intermittent cyclic loading increases cell-driven hierarchical fiber formation and tissue mechanics, producing engineered replacements with similar organization and mechanics as immature ACLs. This study provides new insight into how cyclic loading affects cell-driven fiber maturation. A better understanding of how mechanical cues regulate fiber formation will help to develop better engineered replacements and rehabilitation protocols to drive repair after injury.more » « less
-
Moisture absorption into hygroscopic/hydrophilic materials used in fused deposition modeling (FDM) can diminish desired mechanical properties. Sensitivity to moisture is dependent on material properties and environmental factors and needs characterization. In this article, moisture sensitivity of four grades of polylactic acid (PLA) filaments and four different ratios of PLA/polybutylene succinate (PBS) blended filaments were characterized through FDM printed American society for testing and materials (ASTM-D638) test samples after conditioning the filaments at different relative humidity levels. The tensile testing and scanning electron microscopy (SEM) of the samples' fracture surfaces revealed that PLA 4043D was the most moisture-sensitive among the chosen grades of PLA filaments. Through filament tension test and melt flow index (MFI) testing it was observed that moisture had a significant detrimental effect (20% reduction in tensile strength and 50% increase in MFI) on PLA 4043D filaments. Samples from moisture-conditioned PLA/PBS 75/25 blended filaments displayed a significant reduction (10%) in tensile strength. Moreover, the MFI of 75/25 filaments was increased with subsequent increases in moisture level. Investigation of tensile properties of ASTM samples made from four grades of PLA filaments exposed to room temperature and humidity conditions for 3 months showed an even more significant decrease in strength (ranging from 24% to 36%).more » « less
-
Abstract Managing water resources has become one of the most pressing concerns of scientists in both academia and industry. Broadening access to nontraditional water feedstocks, such as brackish water, seawater and wastewater, requires a robust pretreatment process to prolong the lifetime and improve the efficiency of reverse osmosis treatment processes. Herein, pretreatment membranes with tunable hydrophilic characteristics and mechanical properties were developed through a facile and scalable technique. Specifically, poly(vinyl alcohol) (PVA) and poly(vinyl chloride) (PVC) were electrospun at various PVA‐to‐PVC mass ratios and then crosslinked with a poly(ethylene glycol) diacid. Fiber diameters and morphologies were characterized using scanning electron microscopy (SEM); Fourier transform infrared spectroscopy and confocal fluorescence microscopy further confirmed the presence of both polymers. Moreover, a rigorous analysis to map the PVA/PVC concentration was established to accurately determine the relative concentrations of the two polymers on the co‐spun mat. The crosslinking reaction noted above tuned the membrane porosity from 500 to 80 nm, as seen using SEM, and the mechanical properties were probed using tensile testing. The data revealed that the PVC content controlled the mechanical strength; moreover, higher PVA contents were expected to increase water permeation by enhancing the hydrophilicity, but the higher degree of crosslinking in these materials actually reduced water permeation. This work introduces a facile, scalable route for the manufacture of pretreatment membranes with tunable porosity, mechanical properties and water permeation behavior. © 2021 Society of Industrial Chemistry.more » « less
An official website of the United States government

