Introduction: The emergence and widespread adoption of generative AI (GenAI) chatbots such as ChatGPT, and programming assistants such as GitHub Copilot, have radically redefined the landscape of programming education. This calls for replication of studies and reexamination of findings from pre-GenAI CS contexts to understand the impact on students. Objectives: Achievement Goals are well studied in computing education and can be predictive of student interest and exam performance. The objective in this study is to compare findings from prior achievement goal studies in CS1 courses with new CS1 courses that emphasize the use of human-GenAI collaborative coding. Methods: In a CS1 course that integrates GenAI, we use linear regression to explore the relationship between achievement goals and prior experience on student interest, exam performance, and perceptions of GenAI. Results: As with prior findings in traditional CS1 classes, Mastery goals are correlated with interest in computing. Contradicting prior CS1 findings, normative goals are correlated with exam scores. Normative and mastery goals correlate with students’ perceptions of learning with GenAI. Mastery goals weakly correlate with reading and testing code output from GenAI. 
                        more » 
                        « less   
                    This content will become publicly available on December 9, 2025
                            
                            Use of Generative AI for Assessment Creation by High School Mathematics Teachers
                        
                    
    
            This paper describes an experience report centered on high school mathematics teachers’ use of ALICE, a Generative AI (GenAI) module of the Edfinity homework system. Given natural language prompts (from teachers), ALICE generates the programming code (in WeBWorK format) for the corresponding interactive, isomorphic, auto-gradable problem along with hints and a solution. Writing such code would normally require programming skills. Working with teachers in high schools across a mid-western US state, this paper presents teachers’ experiences using ALICE, on prompt engineering, and the factors that influence these experiences. The implementation study also examines the impact of this experience on teachers’ classroom practice and their views about AI. Findings suggest that teachers’ experiences were largely very positive, however these experiences are shaped by several factors including their context, their attitudes toward technology and AI use, and the perceived usefulness of the tool. These factors hold different levels of importance for individual teachers. The promising results contribute to the burgeoning field of GenAI in education and understanding teacher-AI teaming. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2335835
- PAR ID:
- 10561819
- Editor(s):
- Mishra, S; Kothiyal, A; Iyer, S; Sahasrabudhe, S; Lingnau, A; Kuo, R
- Publisher / Repository:
- Proceedings of the International Conference on Technology 4 Education 2024, Springer Nature
- Date Published:
- Subject(s) / Keyword(s):
- Artificial Intelligence, Generative AI, Teacher-AI Teaming, AI in Education
- Format(s):
- Medium: X
- Location:
- Gandhinagar, India
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Generative AI (GenAI) is advancing rapidly, and the literature in computing education is expanding almost as quickly. Initial responses to GenAI tools were mixed between panic and utopian optimism. Many were fast to point out the opportunities and challenges of GenAI. Researchers reported that these new tools are capable of solving most introductory programming tasks and are causing disruptions throughout the curriculum. These tools can write and explain code, enhance error messages, create resources for instructors, and even provide feedback and help for students like a traditional teaching assistant. In 2024, new research started to emerge on the effects of GenAI usage in the computing classroom. These new data involve the use of GenAI to support classroom instruction at scale and to teach students how to code with GenAI. In support of the former, a new class of tools is emerging that can provide personalized feedback to students on their programming assignments or teach both programming and prompting skills at the same time. With the literature expanding so rapidly, this report aims to summarize and explain what is happening on the ground in computing classrooms. We provide a systematic literature review; a survey of educators and industry professionals; and interviews with educators using GenAI in their courses, educators studying GenAI, and researchers who create GenAI tools to support computing education. The triangulation of these methods and data sources expands the understanding of GenAI usage and perceptions at this critical moment for our community.more » « less
- 
            Artificial Intelligence (AI) and cybersecurity are becoming increasingly intertwined, with AI and Machine Learning (AI/ML) being leveraged for cybersecurity, and cybersecurity helping address issues caused by AI. The goal in our exploratory curricular initiative is to dovetail the need to teach these two critical, emerging topics in highschool, and create a suite of novel activities, 'AI & Cybersecurity for Teens' (ACT) that introduces AI/ML in the context of cybersecurity and prepares high school teachers to integrate them in their cybersecurity curricula. Additionally, ACT activities are designed such that teachers (and students) build a deeper understanding of how ML works and how the machine actually "learns". Such understanding will aid more meaningful interrogation of critical issues such as AI ethics and bias. ACT introduces core ML topics contextualized in cybersecurity topics through a range of programming activities and pre-programmed games in NetsBlox, an easy-to-use block-based programming environment. We conducted 2 pilot workshops with 12 high school cybersecurity teachers focused on ACT activities. Teachers' feedback was positive and encouraging but also highlighted potential challenges in implementing ACT in the classroom. This paper reports on our approach and activities design, and teachers' experiences and feedback on integrating AI into high school cybersecurity curricula.more » « less
- 
            Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience.more » « less
- 
            Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
