Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience. 
                        more » 
                        « less   
                    This content will become publicly available on April 28, 2026
                            
                            Exploring the Untapped: Student Perceptions and Participation in OSS
                        
                    
    
            Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2303042
- PAR ID:
- 10585630
- Publisher / Repository:
- ACM
- Date Published:
- Format(s):
- Medium: X
- Location:
- ACM International Conference on the Foundations of Software Engineering (FSE 2025)
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Social anxiety (SA) has become increasingly prevalent. Traditional coping strategies often face accessibility challenges. Generative AI (GenAI), known for their knowledgeable and conversational capabilities, are emerging as alternative tools for mental well-being. With the increased integration of GenAI, it is important to examine individuals’ attitudes and trust in GenAI chatbots’ support for SA. Through a mixed-method approach that involved surveys (n = 159) and interviews (n = 17), we found that individuals with severe symptoms tended to trust and embrace GenAI chatbots more readily, valuing their non-judgmental support and perceived emotional comprehension. However, those with milder symptoms prioritized technical reliability. We identified factors influencing trust, such as GenAI chatbots’ ability to generate empathetic responses and its context-sensitive limitations, which were particularly important among individuals with SA. We also discuss the design implications and use of GenAI chatbots in fostering cognitive and emotional trust, with practical and design considerations.more » « less
- 
            Artificial intelligence (AI), including large language models and generative AI, is emerging as a significant force in software development, offering developers powerful tools that span the entire development lifecycle. Although software engineering research has extensively studied AI tools in software development, the specific types of interactions between developers and these AI-powered tools have only recently begun to receive attention. Understanding and improving these interactions has the potential to enhance productivity, trust, and efficiency in AI-driven workflows. In this paper, we propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types, such as auto-complete code suggestions, command-driven actions, and conversational assistance. Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development. By establishing a structured foundation for studying developer-AI interactions, this paper aims to stimulate research on creating more effective, adaptive AI tools for software development.more » « less
- 
            Despite the potential of generative AI (GenAI) design tools to enhance design processes, professionals often struggle to integrate AI into their workflows. Fundamental cognitive challenges include the need to specify all design criteria as distinct parameters upfront (intent formulation) and designers' reduced cognitive involvement in the design process due to cognitive offloading, which can lead to insufficient problem exploration, underspecification, and limited ability to evaluate outcomes. Motivated by these challenges, we envision novel metacognitive support agents that assist designers in working more reflectively with GenAI. To explore this vision, we conducted exploratory prototyping through a Wizard of Oz elicitation study with 20 mechanical designers probing multiple metacognitive support strategies. We found that agent-supported users created more feasible designs than non-supported users, with differing impacts between support strategies. Based on these findings, we discuss opportunities and tradeoffs of metacognitive support agents and considerations for future AI-based design tools.more » « less
- 
            Generative AI (GenAI) has brought opportunities and challenges for higher education as it integrates into teaching and learning environments. As instructors navigate this new landscape, understanding their engagement with and attitudes toward GenAI is crucial. We surveyed 178 instructors from a single U.S. university to examine their current practices, perceptions, trust, and distrust of GenAI in higher education in March 2024. While most surveyed instructors reported moderate to high familiarity with GenAI-related concepts, their actual use of GenAI tools for direct instructional tasks remained limited. Our quantitative results show that trust and distrust in GenAI are related yet distinct; high trust does not necessarily imply low distrust, and vice versa. We also found significant differences in surveyed instructors' familiarity with GenAI across different trust and distrust groups. Our qualitative results show nuanced manifestations of trust and distrust among surveyed instructors and various approaches to support calibrated trust in GenAI. We discuss practical implications focused on (dis)trust calibration among instructors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
