This paper presents an active learning strategy for robotic systems that takes into account task information, enables fast learning, and allows control to be readily synthesized by taking advantage of the Koopman operator representation. We first motivate the use of representing nonlinear systems as linear Koopman operator systems by illustrating the improved model-based control performance with an actuated Van der Pol system. Information-theoretic methods are then applied to the Koopman operator formulation of dynamical systems where we derive a controller for active learning of robot dynamics. The active learning controller is shown to increase the rate of information about the Koopman operator. In addition, our active learning controller can readily incorporate policies built on the Koopman dynamics, enabling the benefits of fast active learning and improved control. Results using a quadcopter illustrate single-execution active learning and stabilization capabilities during free-fall. The results for active learning are extended for automating Koopman observables and we implement our method on real robotic systems. 
                        more » 
                        « less   
                    This content will become publicly available on December 19, 2025
                            
                            Control-Coherent Koopman Modeling: A Physical Modeling Approach
                        
                    
    
            The modeling of nonlinear dynamics based on Koopman operator theory, originally applicable only to autonomous systems with no control, is extended to nonautonomous control system without approximation of the input matrix. Prevailing methods using a least square estimate of the input matrix may result in an erroneous input matrix, misinforming the controller. Here, a new method for constructing a Koopman model that yields the exact input matrix is presented. A set of state variables are introduced so that the control inputs are linearly involved in the dynamics of actuators. With these variables, a lifted linear model with the exact input matrix, called a Control-Coherent Koopman Model, is constructed by superposing control input terms, which are linear in local actuator dynamics, to the Koopman operator of the associated autonomous nonlinear system. As an example, the proposed method is applied to multi degree-of-freedom robotic arms, which are controlled with Model Predictive Control (MPC). It is demonstrated that the prevailing Dynamic Mode Decomposition with Control (DMDc) using an approximate input matrix does not provide a satisfactory result, while the Control-Coherent Koopman Model performs well with the correct input matrix, even performing better than the bilinear formulation of the Koopman operator. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2021625
- PAR ID:
- 10561898
- Publisher / Repository:
- IEEE
- Date Published:
- Edition / Version:
- 63rd
- Issue:
- 63
- Subject(s) / Keyword(s):
- Koopman Operator Lifted linearization Non-autonomous systems with control, Koopman Model Predictive Control
- Format(s):
- Medium: X Size: 1.5 MB Other: PDF
- Size(s):
- 1.5 MB
- Location:
- Proceedings of the 63rd IEEE Conference on Decision and Control, Milan
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopman-based LQR control.more » « less
- 
            Abstract Purpose of ReviewWe review recent advances in algorithmic development and validation for modeling and control of soft robots leveraging the Koopman operator theory. Recent FindingsWe identify the following trends in recent research efforts in this area. (1) The design of lifting functions used in the data-driven approximation of the Koopman operator is critical for soft robots. (2) Robustness considerations are emphasized. Works are proposed to reduce the effect of uncertainty and noise during the process of modeling and control. (3) The Koopman operator has been embedded into different model-based control structures to drive the soft robots. SummaryBecause of their compliance and nonlinearities, modeling and control of soft robots face key challenges. To resolve these challenges, Koopman operator-based approaches have been proposed, in an effort to express the nonlinear system in a linear manner. The Koopman operator enables global linearization to reduce nonlinearities and/or serves as model constraints in model-based control algorithms for soft robots. Various implementations in soft robotic systems are illustrated and summarized in the review.more » « less
- 
            The Koopman operator theory provides a global linearization framework for general nonlinear dynamics, offering significant advantages for system analysis and control. However, practical applications typically involve approximating the infinite-dimensional Koopman operator in a lifted space spanned by a finite set of observable functions. The accuracy of this approximation is the key to effective Koopman operator-based analysis and control methods, generally improving as the dimension of the observables increases. Nonetheless, this increase in dimensionality significantly escalates both storage requirements and computational complexity, particularly for high-dimensional systems, thereby limiting the applicability of these methods in real-world problems. In this paper, we address this problem by reformulating the Koopman operator in tensor format to break the curse of dimensionality associated with its approximation through tensor decomposition techniques. This effective reduction in complexity enables the selection of high-dimensional observable functions and the handling of large-scale datasets, which leads to a precise linear prediction model utilizing the tensor-based Koopman operator. Furthermore, we propose an optimal control framework with the tensor-based Koopman operator, which adeptly addresses the nonlinear dynamics and constraints by linear reformulation in the lifted space and significantly reduces the computational complexity through separated representation of the tensor structure.more » « less
- 
            Abstract In this work, we propose the integration of Koopman operator methodology with Lyapunov‐based model predictive control (LMPC) for stabilization of nonlinear systems. The Koopman operator enables global linear representations of nonlinear dynamical systems. The basic idea is to transform the nonlinear dynamics into a higher dimensional space using a set of observable functions whose evolution is governed by the linear but infinite dimensional Koopman operator. In practice, it is numerically approximated and therefore the tightness of these linear representations cannot be guaranteed which may lead to unstable closed‐loop designs. To address this issue, we integrate the Koopman linear predictors in an LMPC framework which guarantees controller feasibility and closed‐loop stability. Moreover, the proposed design results in a standard convex optimization problem which is computationally attractive compared to a nonconvex problem encountered when the original nonlinear model is used. We illustrate the application of this methodology on a chemical process example.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
