skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BatchIT: Intelligent and Efficient Batching for IoT Workloads at the Edge
Next-generation stream processing systems for community scale IoT applications must handle complex nonfunctional needs, e.g. scalability of input, reliability/timeliness of communication and privacy/security of captured data. In many IoT settings, efficiently batching complex workflows remains challenging in resource-constrained environments. High data rates, combined with real-time processing needs for applications, have pointed to the need for efficient edge stream processing techniques. In this work, we focus on designing scalable edge stream processing workflows in real-world IoT deployments where performance and privacy are key concerns. Initial efforts have revealed that privacy policy execution/enforcement at the edge for intensive workloads is prohibitively expensive. Thus, we leverage intelligent batching techniques to enhance the performance and throughput of streaming in IoT smart spaces. We introduce BatchIT, a processing middleware based on a smart batching strategy that optimizes the trade-off between batching delay and the end-to-end delay requirements of IoT applications. Through experiments with a deployed system we demonstrate that BatchIT outperforms several approaches, including micro-batching and EdgeWise, while reducing computation overhead.  more » « less
Award ID(s):
2133391 2008993
PAR ID:
10561945
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2374-9709
ISBN:
979-8-3503-2793-9
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Location:
Seoul, Korea, Republic of
Sponsoring Org:
National Science Foundation
More Like this
  1. With the proliferation of Internet of Things (IoT) devices, real-time stream processing at the edge of the network has gained significant attention. However, edge stream processing systems face substantial challenges due to the heterogeneity and constraints of computational and network resources and the intricacies of multi-tenant application hosting. An optimized placement strategy for edge application topology becomes crucial to leverage the advantages offered by Edge computing and enhance the throughput and end-to-end latency of data streams. This paper presents Beaver, a resource scheduling framework designed to efficiently deploy stream processing topologies across distributed edge nodes. Its core is a novel scheduler that employs a synergistic integration of graph partitioning within application topologies and a two-sided matching technique to optimize the strategic placement of stream operators. Beaver aims to achieve optimal performance by minimizing bottlenecks in the network, memory, and CPU resources at the edge. We implemented a prototype of Beaver using Apache Storm and Kubernetes orchestration engine and evaluated its performance using an open-source real-time IoT benchmark (RIoTBench). Compared to state-of-the-art techniques, experimental evaluations demonstrate at least 1.6× improvement in the number of tuples processed within a one-second deadline under varying network delay and bandwidth scenarios. 
    more » « less
  2. Abstract Abstract: Users trust IoT apps to control and automate their smart devices. These apps necessarily have access to sensitive data to implement their functionality. However, users lack visibility into how their sensitive data is used, and often blindly trust the app developers. In this paper, we present IoTWATcH, a dynamic analysis tool that uncovers the privacy risks of IoT apps in real-time. We have designed and built IoTWATcH through a comprehensive IoT privacy survey addressing the privacy needs of users. IoTWATCH operates in four phases: (a) it provides users with an interface to specify their privacy preferences at app install time, (b) it adds extra logic to an app’s source code to collect both IoT data and their recipients at runtime, (c) it uses Natural Language Processing (NLP) techniques to construct a model that classifies IoT app data into intuitive privacy labels, and (d) it informs the users when their preferences do not match the privacy labels, exposing sensitive data leaks to users. We implemented and evaluated IoTWATcH on real IoT applications. Specifically, we analyzed 540 IoT apps to train the NLP model and evaluate its effectiveness. IoTWATcH yields an average 94.25% accuracy in classifying IoT app data into privacy labels with only 105 ms additional latency to an app’s execution. 
    more » « less
  3. null (Ed.)
    Many Internet of Things (IoT) applications are time-critical and dynamically changing. However, traditional data processing systems (e.g., stream processing systems, cloud-based IoT data processing systems, wide-area data analytics systems) are not well-suited for these IoT applications. These systems often do not scale well with a large number of concurrently running IoT applications, do not support low-latency processing under limited computing resources, and do not adapt to the level of heterogeneity and dynamicity commonly present at edge environments. This suggests a need for a new edge stream processing system that advances the stream processing paradigm to achieve efficiency and flexibility under the constraints presented by edge computing architectures. We present \textsc{Dart}, a scalable and adaptive edge stream processing engine that enables fast processing of a large number of concurrent running IoT applications’ queries in dynamic edge environments. The novelty of our work is the introduction of a dynamic dataflow abstraction by leveraging distributed hash table (DHT) based peer-to-peer (P2P) overlay networks, which can automatically place, chain, and scale stream operators to reduce query latency, adapt to edge dynamics, and recover from failures. We show analytically and empirically that DART outperforms Storm and EdgeWise on query latency and significantly improves scalability and adaptability when processing a large number of real-world IoT stream applications' queries. DART significantly reduces application deployment setup times, becoming the first streaming engine to support DevOps for IoT applications on edge platforms. 
    more » « less
  4. null (Ed.)
    Abstract Edge computing is emerging as a new paradigm to allow processing data near the edge of the network, where the data is typically generated and collected. This enables critical computations at the edge in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed through computationally intensive algorithms with stringent reliability, security and latency constraints. Our key tool is the theory of coded computation, which advocates mixing data in computationally intensive tasks by employing erasure codes and offloading these tasks to other devices for computation. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a private and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (1) the privacy requirements of IoT applications and devices, and (2) the heterogeneous and time-varying resources of edge devices. We show that PRAC outperforms known secure coded computing methods when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and implementations on Android-based smartphones. 
    more » « less
  5. Edge and Fog computing paradigms are used to process big data generated by the increasing number of IoT devices. These paradigms have enabled cities to become smarter in various aspects via real-time data-driven applications. While these have addressed some flaws of cloud computing some challenges remain particularly in terms of privacy and security. We create a testbed based on a distributed processing platform called the Information flow of Things (IFoT) middleware. We briefly describe a decentralized traffic speed query and routing service implemented on this framework testbed. We configure the testbed to test counter measure systems that aim to address the security challenges faced by prior paradigms. Using this testbed, we investigate a novel decentralized anomaly detection approach for time-sensitive distributed smart transportation systems 
    more » « less